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Problem

I Problem: Estimate w from binary measurement vector

y = sign
{
(H + E)T w + n

}
,

n ∼ N(0, σ2
nI), e ij ∼ N(0, σ2

e), iid and nyE.
I Application: Estimation of physical quantities based on

binary quantized measurements in wireless sensor
networks

I ML estimation:y = sign
{
HTw + z

}

=⇒ wML =argmin
w

−
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Results

I ML estimate is consistent
I The Cramér-Rao Lower Bound on the mean square error

is derived
I ML estimation problem is reformulated as a convex

optimization problem

wML = argmin
w

−
∑N

i=1 log Φ
{

y i
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}
to

v∗ = argmin
v
−
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log Φ
{
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subject to ‖v‖22 ≤
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2
e

v∗.
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NNLMS Algorithm
I The unknown system is characterized by real-valued

observations:

y(n) = α∗
T

x(n) + z(n),

x(n) =
[
x(n) x(n − 1) . . . x(n −N + 1)

]T
, x(n), z(n)

are stationary and zero mean
I The optimum non-negative model with mean-square error

criterion,

α0 = argmin
α

E

{[
y(n) −αTx(n)

]2
}
) subject to α0

i ≥ 0∀i

I NNLMS Algorithm: fixed-point iteration scheme

α(n + 1) = α(n) + ηe(n)Dx(n)α(n),

e(n) = y(n) −αT(n)x(n),Dx(n) = diag
{
x(n)

}



Variants of NNLMS

I Normalized NNLMS: Sensitivity of input power

αN(n + 1) = αN(n) +
η∥∥∥x(n)
∥∥∥2

2 + ε
e(n)Dx(n)αN(n)

I Exponential NNLMS: Unbalance of convergence rates for
different weights

αE(n + 1) = αE(n) + ηe(n)Dx(n)α
(γ)

E (n),0 < γ < 1

α(γ)Ei
= sgn{αEi

}|α(γ)Ei
|.

I Sign-Sign NNLMS: Computational complexity

αN(n + 1) = αN(n) + ηsgn
{
e(n)Dx(n)

}
αN(n), η = 2−m
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Problem
I A network of N agents, where each node possesses a

strongly convex cost function, Jk (w) , and a set of affine
equality and convex inequality constraints w ∈Wk , w ∈ RM

argmin
w

Jglob =
N∑

k=1

Jk (w) s.t. w ∈W =
N⋂

k=1

Wk

I Unconstrained optimization problem that approximates
above problem

argmin
w

Jglob
η =

N∑
k=1

J′kη(w), J′kη(w) = Jk (w) + ηpk (w)

pk (w) is selected so that ∇pk (w) = 0, when w ∈Wk

I The distributed solution relies on local processing with
each agent having knowledge of only its own constraint set
and cost function



Algorithm

I Gradient descent algorithm at each node and convex
combination of estimates of nodes in neighborhood

ψk ,i = wk ,i−1 − µ∇wJ′kη(wk ,i−1)

= wk ,i−1 − µ∇w
{
Jk (wk ,i−1) + ηpk (wk ,i−1)

}
wk ,i =

∑
l∈Nk

al,kψl,i

I Adapt-then-Combine:

ζk ,i = wk ,i−1 − µ∇wJk (wk ,i−1)

ψk ,i = ζk ,i − µη∇wpk (ζk ,i)

wk ,i =
∑
l∈Nk

al,kψl,i

I Combine-then-Adapt:

ψk ,i−1 =
∑
l∈Nk

al,k wl,i

ζk ,i = ψk ,i−1 − µ∇wJk (ψk ,i−1)

wk ,i = ζk ,i − µη∇wpk (ζk ,i)
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Problem

I A weighted and undirected graph, G = (V,E,W)

I Given a set of training graph signals,
Y =

[
y1 y2 . . . yM

]
∈ RN×M

I Find structured graph dictionary that represent all of the
signals in Y as linear combinations of only a few of its
atoms

I Structure on dictionary:D =
[
D1 D2 . . . Ds

]
∈ RN×NS

I Ds =
∑K

k=0 αskL
k
∈ RN×N , L is normalized graph

Laplacian operator
I Two additional constraints

I 0 � Ds � cI
I (c − ε1) I �

∑S
s=1Ds � (c + ε2) I

I Set of parameters:α ∈ R(K+1)×S



Algorithm

I Optimization problem

argmin
α,X

‖Y −DX‖2F − µ ‖α‖
2
2 ,

s.t. sparsity and stucture conditions

Iterative Algorithm:

1. Fix parameters α and solve for X using OMP, under sparsity
constraint, ‖xm‖ ≤ T0∀m

2. Using X solve for α using a constrained quadratic
optimization
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