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Problem

» Problem: Estimate w from binary measurement vector

y= sign{(H+ E)Tw+n},
n~ N(0,02l), ej ~ N(0,02), iid and nLE.

» Application: Estimation of physical quantities based on
binary quantized measurements in wireless sensor
networks

» ML estimation:y = sign {HTW + z}
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Results

» ML estimate is consistent
» The Cramér-Rao Lower Bound on the mean square error
is derived

» ML estimation problem is reformulated as a convex
optimization problem
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ML = argmin Li=tlog {y ’ \/nwn2 e+on}
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V' = argmin — Z log ®{y;h;v},
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Variants of Non-Negative Least-Mean-Square Algorithm
and Convergence Analysis

Authors: Jie Chen, Cédric Richard, Jose-Carlos M.
Bermudez, and Paul Honeine



NNLMS Algorithm

» The unknown system is characterized by real-valued
observations:

y(n) = &' x(n) + 2(n),

x(n) = [x(n) x(n=1) ... x(n=N+1)]", x(n), 2(n)
are stationary and zero mean

» The optimum non-negative model with mean-square error
criterion,

a® = argminE {[y(n) - aTx(n)]z}) subject to a? > 0Vi
» NNLMS Algorithm: fixed-point iteration scheme
a(n+1) = a(n) +ne(n)Dx(n)a(n),

e(n) = y(n) - a'(n)x(n),Dx(n) = diag {x(n)}



Variants of NNLMS

» Normalized NNLMS: Sensitivity of input power

an(n+1) =an(n) + #ze(n)Dx(n)aN(n)
(), +e

» Exponential NNLMS: Unbalance of convergence rates for
different weights

ag(n+1) = ag(n) +ne(n)Dy(n)ag’(n),0 <y <1
) _ )
aE,- = Sgn{"‘E;”"‘E, |
» Sign-Sign NNLMS: Computational complexity

an(n+1) = an () +nsgn (e(n) Dy(n)} apy(n).n =27



Adaptive Penalty-Based Distributed Stochastic Convex
Optimization
Authors: Zaid J. Towfic and Ali H. Sayed



Problem

» A network of N agents, where each node possesses a
strongly convex cost function, Jx(w) , and a set of affine
equality and convex inequality constraints w € Wy, w € R

argmangIOb Z Ji(w)st. weW = ﬂ Wy
k=1

» Unconstrained optimization problem that approximates
above problem

argmangIOb ZJ,’(,I i (W) = Ji (W) + 1Py (w)

px(w) is selected so that Vp,(w) = 0, when w € Wy

» The distributed solution relies on local processing with
each agent having knowledge of only its own constraint set
and cost function



Algorithm

» Gradient descent algorithm at each node and convex
combination of estimates of nodes in neighborhood

Vki = Wk,iet = WV wdy, (W j-1)

= Wk,i—1 — UVw {Jk (Wk,i=1) + npx (Wi i=1)}

Wi = Z aj ki

le Nk
» Adapt-then-Combine: » Combine-then-Adapt:
i = Wieiet = WVwdk (Wijic1) g g = Z aj kWi
ki = Ck,i = nVwpPk (Ck,i) N
Wi = Z a ki Cki = Yric1 = WV wdk (P i-1)

IENK Wk i = Ck,i — unVwpk (Ck.i)



Learning Parametric Dictionaries for Signals on Graphs

Authors: Dorina Thanou, David | Shuman, and Pascal
Frossard



Problem

v

A weighted and undirected graph, G = (V, &, W)

Given a set of training graph signals,

Y = [Y1 Y2 ... YM] e RVM

Find structured graph dictionary that represent all of the
signals in Y as linear combinations of only a few of its
atoms

Structure on dictionary:D = [1)1 Do ... Z)s] € RN*NS

v

v

v

» Ds = YK as LK e RN, £ is normalized graph
Laplacian operator
» Two additional constraints
» 0<Ds =<cl
i (C_€1)IS 22:1 Ds < (C+€2)l

Set of parameters:a € R(K+1)xS

v



Algorithm

» Optimization problem
argmin||¥ - DXIIE — pllrll3,
a,

s.t. sparsity and stucture conditions

lterative Algorithm:
1. Fix parameters a and solve for X using OMP, under sparsity

constraint, ||xm|l < ToVm
2. Using X solve for a using a constrained quadratic

optimization
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