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Rectified Gaussian Scale Mixtures and the Sparse
Non-Negative Least Squares Problem
A. Nalci, Igor Fedorov, Maher Al-Shoukairi, Thomas T. Liu, and Bhaskar D. Rao

Considers the problem of Sparse Non-Negative Least Squares
(S-NNLS), i.e.,

min
x≥0,y=φx

‖x‖0

They propose a Bayesian framework for sparse recovery

Choose Rectified Gaussian hyperprior on x, i.e.,

p(xi |γi ) = NR(xi ;µ, γi ) =
√

2
πγi

e
− (x−µ)2

2γi u(x)

erfc(−µ
2γi

)

Type-II estimation using expectation-maximization algorithm
(Rectified-SBL)



In M-step, compute E[x2i ], no closed form expression
Proposed numerical methods such as MCMC-EM and GAMP
GAMP has computational complexity of O(MN)

Figure 1 : Φ ∈ R100×400



Recovery of Structured Signals With Prior Information via
Maximizing Correlation
Xu Zhang , Wei Cui , and Yulong Liu

Objective: Recover structured signals in presence of prior information φ
by solving,

min
x
‖x‖sig − λ 〈x, φ〉

s.t.‖Ax− y‖2 ≤ δ

where, ‖ · ‖sig is an appropriate norm

Structure considered - Sparsity, Block Sparsity and Low rank

Performance guarantees under sub-Gaussian measurements, precisely
m = O(γ2(Tf ∩ Sn−1))

Tf - convex cone induced by f = ‖x‖sig − λ 〈x, φ〉
γ(ξ) = E supx∈ξ| 〈x, g〉 |, g ∼ N (0, 1) → Gaussian complexity



Let x∗ and x̂ be the true and estimated sparse signal
Define,

v1 := maxw∈∂||x∗||−λφ ||w||2

u1 := ||sign(x∗)− λφ||2

v1 and u1 are used to characterize the Gaussian complexity of
Tf ∩ Sn−1

Theorem: Let A be an m × n matrix whose rows are independent,
centered, isotropic and sub-Gaussian random vectors and x∗ ∈ Rn be an
s-sparse vector. If,

√
m ≥ CK 2 min

{√
n ·
(

1− n

v1
· 2

π

(
1− s

n

)2)
,
√
s + (n − s)u1

}
+ ε

then with probability 1− o(1),

||x∗ − x̂||2 ≤
2δ

ε



Remark: v1 =
∑

i∈I (sign(xi
∗)−λφi )2 +

∑
i∈I c (1 + |λφi |)2 ≥ n− s hence,

n ·
(

1− n
v1
· 2π
(
1− s

n

)2) ≥ n − 2
π (n − s)

In extreme sparsity, n − 2
π (n − s)� s

Suitable prior information can lead to u1 → 0

Hence, second term dominates, leading m = O(s)



Minimum Data Length for Integer Period Estimation
Srikanth Venkata Tenneti and Palghat P. Vaidyanathan

Objective: Derive minimum number of samples required to estimate
period of a signal independent of algorithms

Common intuition 2P samples, if P is the true period

Can do better if some additional information present

Theorem: Let x(n) be a periodic signal, whose period is known to lie in
the integer set P = {P1,P2, ...,PK}. To estimate the period using L
consecutive samples, it is both necessary and sufficient that:

L ≥ Lmin = max
Pi ,Pj∈P

Pi + Pj − 〈Pi ,Pj〉

where, 〈·, ·〉 is the greatest common divisor



Consider a sequence with period either 4 or 10. L ≥ 10 + 4 - 2 = 12
Period 4: AGAT AGAT AGA
Period 10: AGATAGATAG A
Undecided, until 12th element is not shown.
If x(12) = T, P = 4
If x(12) = G, P = 10

Figure 2 : DFT spectra with A = 1, T = 2, C = 3, G = 4



Uniform Recovery Bounds for Structured Random Matrices
in Corrupted Compressed Sensing

Goal

Uniform recovery guarantee for the following problem:

y = Ax∗ + z∗ + w

where, x∗ and z∗ are unknown sparse vectors and w is dense noise with
bounded energy

They provide RIP constants for structured matrix A

A = UDB, where U is a unit-norm tight frame, D is a diagonal
matrix with independent zero-mean and unit variance sub-gaussian
entries and, B is column-wise orthonormal matrix i.e., B∗B = I
Such structured matrix is used in designing mask for double random
phase encoding

It encompasses structured matrices like partial random circulant
matrices and random probing



Theorem: Suppose y = Ax∗ + z∗ + w with Θ = [A I], A = UDB,
||x∗||0 ≤ s and ||z∗||0 ≤ k. If, for δ ∈ (0, 1)

m ≥ c1δ
−2s n̂µ2(B) log2 s log2 n̂

m ≥ c1δ
−2k log2 k log2 n̂

then with probability at least 1− 2n̂− log2 s log n̂, δs,k ≤ δ
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