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Relay-Aided Space-Time Beamforming for Interference

Networks with Partial Channel Knowledge

Contributions
Proposes a novel multiantenna interference management techniqure referred to as
r-STBF.

KM
K+M−1

multiplexing gain is achievable in a K-user MISO interference channel when

the relay has M antennas.
KL

K+L−1
multiplexing gain is achievable in a K × L SISO X channel with an M

antenna relay.

System Model
MIMO Relay-Aided K -User MISO Interference Channel
Assumption: Local CSI at the Rx, Delayed CSI at the relay, CSI of the relay to
receiver using channel reciprocity.

y [k](n) = h[k,k](n)x[k](n) +
K∑

j=1,j 6=k

h[k,j ]T (n)x[j ](n)

+ h[k,R](n)x[R](n) + z [k](n) (1)

y[R](n) =
K∑

k=1

H[R,k](n)x[k](n) + z[R](n), k ∈ K. (2)

r-STBF explained in the next slide using a toy example (K = M = 2).
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r-STBF: Phase 1 (2 time slots): Side-Information Learning: Only transmitters transmit and
relay receives. Received signals at the users 1 and 2.

L[1,1](1) = h
[1,1]
1 (1)s

[1]
1 + h

[1,1]
2 (1)s

[1]
2 (3)

L[2,1](1) = h
[2,1]
1 (1)s

[1]
1 + h

[2,1]
2 (1)s

[1]
2 (4)

L[1,2](2) = h
[1,2]
1 (2)s

[2]
1 + h

[1,2]
2 (2)s

[2]
2 (5)

L[2,2](2) = h
[1,1]
1 (2)s

[2]
1 + h

[2,2]
2 (2)s

[2]
2 (6)

(7)

Receive beamforming used at the relay to separate the two received symbols in time slot k.

ŝ[k] =
(

H[R,k](k)
)−1

y[R](k) = s[k] +
(

H[R,k](k)
)−1

z[R](k) (8)

k ∈ 1, 2,where s[k] = [s
[k]
1 , s

[k]
2 ]T (9)

Phase 2 (1 time slot): Space-Time Relay Transmission: Relay forwards the received signals by
applying space-time relay beamforming.

x[R](3) = γ

(

V[1] ŝ[1] + V[2] ŝ[2]
)

= γV[1]s[1] + γV[2]s[2] + γz[R] (10)

Beamforming: V[1] and V[2] designed such that

γh[2,R]T (3)V[1] = h[2,1]T (1), h[2,R]T (3)V[2] =
[

−h
[2,2]∗
2 (2), h

[2,2]∗
1 (2)

]

(11)

γh[1,R]T (3)V[2] = h[1,2]T (2), h[1,R]T (3)V[1] =
[

−h
[1,1]∗
2 (1), h

[1,1]∗
1 (1)

]

(12)
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PRIME: Phase Retrieval via Majorization-Minimization

Contributions
Proposed low-complexity algorithms for phase retrieval based on MM
framework.
Three algorithms: PRIME-Modulus-Single-Term,
PRIME-Modulus-Both-Terms, PRIME-Power.

Optimization Problem 1:

minimize
x

N∑

i=1

∣
∣
∣yi − |aHi x|2

∣
∣
∣

2

2
= minimize

x

∥
∥
∥y− |AH

x|2
∥
∥
∥

2

2
(13)

Optimization Problem 2:

minimize
x

∥
∥
∥
√
y− |AH

x|
∥
∥
∥

2

2
(14)

=minimize
x

N∑

i=1

(∣
∣
∣a

H
i x

∣
∣
∣

2

− 2
√
yi

∣
∣
∣a

H
i x

∣
∣
∣+ yi

)

(15)

A ∈ C
K×N is the measurement matrix,

y ∈ R
N×1 is the measurement vector,

x ∈ C
K×1 is the complex vector to be estimated.
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PRIME-Modulus-Single-Term: To solve problem 2. Majorization of the non-convex second
term using Cauchy-Schwarz inequality, which leads to a simple least squares problem:

∣
∣
∣a

H
i x

∣
∣
∣ .

∣
∣
∣a

H
i x

(k)
∣
∣
∣ ≥ Re

(∣
∣
∣a

H
i x

∣
∣
∣

(

x(k)
)H

ai

)

(16)

PRIME-Modulus-Both-Terms: To solve problem 2. Majorization of both the terms (for
2nd, similar to the first algorithm). For the first term, the following result is used.

xHLx ≥ xHMx+ 2Re
(

xH(L −M)x0

)

+ xH0 (M− L)x0 (17)

where M and L are Hermitian matrices such that M � L.
PRIME-Power: To solve problem 1. Majorization of problem 1 as a leading eigenvector
problem using MM techniques.

minimize
x,X

N∑

i=1

(yi − Tr (AiX))
2 (18)

=minimize
x,X

N∑

i=1

(Tr(AiX))
2

︸ ︷︷ ︸

vec(X)HΦvec(X)

−

N∑

i=1

2yiTr(AiX) (19)

subject to X = xxH

where Ai = aia
H
i , X = xxH and Φ ,

∑N
i=1 vec(Ai )vec(Ai )

H .
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MAP Support Detection for Greedy Sparse Signal Recovery

Algorithms in Compressive Sensing

Contributions
Proposed a novel support detection method for greedy algorithms, referred to
as MAP support detection.
Algorithms: MAP-MP, MAP-OMP, MAP-gOMP, MAP-CoSaMP, MAP-SP.

System Model:

y = Φx+ w (20)

where Φ ∈ R
M×N = [a1, ..., aN ], y ∈ R

M is the measurement vector, x ∈ R
N is the

vector to be estimated, w ∈ R
M is the Gaussian noise with zero mean and variance

σ
2
w .

The entries of the dictionary matrix are drawn from an IID Gaussian distribution
with zero mean and variance 1

M
.

Sparsity level K is known apriori.
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MAP-Matching Pursuit

x ∈ {0, 1}N , residual vector in k th iteration is rk−1. Estimated support in the k th

iteration is Sk−1.

z
k
n =

aTn
‖an‖2

rk−1

︷ ︸︸ ︷



∑

l∈T \Sk−1

alxl +w



 (21)

= ‖an‖2xn +
∑

l∈T \{Sk−1∪{n}}

aTn alxl

‖an‖2
+

aTn w

‖an‖2
(22)

Hypothesis test corresponding to xn = 0 and xn = 1:

H0 : z
k
n =

∑

l∈T \{Sk−1∪{n}}

aTn alxl

‖an‖2
+

aTn w

‖an‖2
(23)

H1 : z
k
n = ‖an‖2xn +

∑

l∈T \{Sk−1∪{n}}

aTn alxl

‖an‖2
+

aTn w

‖an‖2
(24)

Conditional probability density functions of zkn given xn is used to determine the
MAP ratio for a given observation zkn . The support index is determined by
selecting the index which maximizes the MAP ratio.
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Delay Control for Temporally Fair Scheduling Policies via

Opportunistic Mixing

Contributions
Proposed a novel concept of scheduling policy for delay control.
Developed a high performance, flexible delay control framework with a set of
algorithms that can equip any temporally fair scheduling policy with a highly
effective delay control capability.

System Model:
Wireless system with K users competing for a single frequency resource. Time is
divided into equal slots.
Channel metric xk , utility function for selecting users uk = Uk(xk), service time τk

Algorithms:
Delay control via Markov decision process (MDP).
Delay control via round robin mixing (RRM).
Delay control via opportunistic Bernoulli mixing (OBM).

Sai Thoota (IISc) JW: TSP Oct 1, 2016 October 15, 2016 8 / 9



Other Interesting Papers

Exploring algorithmic limits of matrix rank minimization under affine constraints.

Multivariate fronthaul quantization for downlink C-RAN.

Exact joint sparse frequency recovery via optimization methods.

Design and performance analysis of noncoherent detection systems with massive receiver
arrays.

Newtonized orthogonal matching pursuit: frequency estimation over the continuum.

Recursive identification method for piecewise ARX models: a sparse estimation approach.

Design and analysis of broadband amplify-and-forward cooperative systems: a
fractionally-spaced sampling approach.
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