Journal Watch: IEEE Trans. on Wireless Communications, Jun. 2014 Issue

Venugopalakrishna Y. R. SPC Lab, IISc. 28/06/2014

Adaptive Sparse Channel Estimation under Symmetric alpha-Stable Noise

K. Pelekanakis and M. Chitre, National Univ. Of Singapore K-tap channel model, Rx. noise is SαS distributed (impulse-like)

Adaptive online algorithms to estimate channel coeff.

RLS-type

Cost-function=loss-func. + I-0 norm constraint

Loss func. considers higher penalty on large errors

Natural Gradient

Cost-function=loss-func. + dist(h[n],h[n-1])+I-0 norm constr.

NG-type algo. is superior to RLS-type

On the Physical Layer Security of Backscatter Wireless Systems

Walid Saad, Univ. of Miami Xiangyun Zhou, Australian Nat. Univ. Zhu Han, Univ. of Houston H. Vincent Poor, Stanford Univ.

On the Physical Layer Security of Backscatter Wireless Systems

Walid Saad, Univ. of Miami
Xiangyun Zhou, Australian Nat. Univ.
Zhu Han, Univ. of Houston
H. Vincent Poor, Princeton Univ.

Backscatter wireless systems (Eg. RFID systems)

Literature: light-weight cyptography

Physical layer secrecy: Inject noise on the CW signal, causing interference to eaves dropper (Txr will divide power bwn. CW signal and noise)

Derives secrecy rate for single Reader-tag system

Derives condition under which the positive secrecy rate can be achieved

Eg: If Eavesdropper is very close to tag, it is not possible to maintain secrecy under Txt. Power constraint

Sensing or Transmission: Causal Cognitive Radio Strategies with Censorship

Kasra Haghighi, Erik G. Strom, and Erik Agrell Chalmers Univ. of Tech., Sweden

Single Primary Txr., and a single Cognitive radio link

Primary activity is slot synchronised

Primary activity is modeled by HMMs (CR learns tom)

In a slot, either CR senses or transmits

In previous work, APP for simultaneous sensing and access

Contributions

Provide a scheme to evaluate LLR by using censored observations (CLAPP)

LLR is a function of previous observations and PU HMM

Large Overlaid Cognitive Radio Networks: From Throughput Scaling to Asymptotic Multiplexing Gain

Armin Banaei, Costas N. Georghiades, and Shuguang Cui Texas A&M Univ.

- Gupta & Kumar: sum throughput for a n/w with uniformly and independ. distibuted λ nodes (time slotted multi-hop commun.) scales as $O(\sqrt{\lambda}/\log(\lambda))$
- Literature: In an underlay network, both primary and CR network achieve throughput scaling without outage
- Overlay n/w: A primary n/w where nodes are PPP distributed with density λ and CR nodes are PPP distributed with density λ^{β}
- CR nodes perform spec. sensing by considering a sensing radius (perfect sensing with in the radius)
- New metric: Asymptotic multiplexing gain (AMG)
- Derives Throughput scaling with CR n/w satisfying AMG requirement of Primary n/w
 - Denser CR network and sparser CR network
 - For $\beta > 1$. CR n/w can achieve good throughout performance, whereas for