IEEE Trans. on Inform. Theory Aug. 2014

16 Aug. 2014

Chandra R. Murthy

Signal processing for communication lab

Hidden Cliques and the Certification of the Restricted Isometry Property

P. Koiran* and A. Zouzias^ *Univ. of Lyon, ^Univ. of Toronto

RIP of order k: for every k-sparse vector x, it is true that

$$(1 - \delta)||x||^2 \le ||\Phi x||^2 \le (1 + \delta)||x||^2$$

- $(1-\delta)||x||^2 \le ||\Phi x||^2 \le (1+\delta)||x||^2$ Random constructions: κ linear in m, where Ψ is $m \times N$
- Deterministic constructions: k of order √m. Large gap!
- Question: computational complexity of checking RIP
- Positive results:
 - Suggest an algorithm that is better than brute force search
 - Algo "slightly" breaks the √m barrier
- Negative result:
 - Certification of RIP is an NP hard problem
 - Relate it to the problem of finding (large) cliques in graphs
- Good example of a well-written introduction!

Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise

C. Qiu, N. Vaswani, B. Lois, and L. Hogben Iowa State Univ.

- Robust PCA problem: PCA in the presence of outliers
 - Alternatively, sparse signal recovery in large but structured noise
- Noise: dense in a (slowly-changing) low-dim. Subspace
- Propose and analyze recursive projected CS (ReProCS) algo
- Assume a subspace change model, and s.t. ReProCS can exactly recover the support set at all times
- Long paper, combines many results from
 - Linear algebra (a "sin θ " theorem, Weyl's, Ostrowski's theorems)
 - Random matrix theory (tail bounds)
 - And extends these results too

Sufficient Conditions on the Optimality of Myopic Sensing in Opportunistic Channel Access: A Unifying Framework

Y. Liu, M. Liu, and S. H. A. Ahmad, Univ. of Michigan

- System model
 - Single-user pair with access to N channels
 - Markov ON-OFF channels
 - Each slot, can sense $k \le N$ channels; perfect sensing
 - Out of those sensed to be available, can use $m \le k \le N$ channels
 - Unit reward for each channel used; i.e., no fading, interference
- Goal: maximize long-term discounted or average reward
- Myopic policy: maximizes the one-step reward
- Results:
 - Sufficient conditions for optimality of the myopic policy
 - Show cases where the myopic policy is suboptimal, for m < k

Sookha

- R. A. Chou and M. R. Bloch, Separation of reliability and secrecy in rate-limited secret-key generation
- M. Gavish and D. L. Dhonho, The optimal hard threshold for singular values is 4/v3
- S. Kar and J. F. Moura, Asymptotically efficient distributed estimation with exponential family statistics