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OFDM System Model and EM Algorithm
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The received signal y is given by,

y = XFh + v
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Support Aware EM Algorithm for Channel Estimation
and Data Detection

E-step : Q
(

X/X(p)
)

= Eh/y,X(p)

(

log p(y,h/X)/y,X(p)
)

M-step : X(p+1) = arg max
X

Q
(

X/X(p)
)

log p(y,h/X) = log p(y/h,X)
︸ ︷︷ ︸

Log Likelihood, func. of X

+ log p(h)
︸ ︷︷ ︸

not a func. of X
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SBL for Channel Estimation
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h is sparse in time domain

h(i) ∼ CN (0, γi), where γi is a deterministic but unknown
hyperparameter

The sparsity profile: Γ = diag(γ1, γ2 . . . γL), i.e., if the
diagonal entries γi = 0, hi = 0
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SBL for Basis Selection

E step : Q(Γ/Γ(p)) = Eh/y;Γ(p)(log p(y,h; Γ))

p(h/y; Γ(p)) = N (µ,Σh), µ = σ−2ΣhAHy

Σh =
(

σ−2AHA + Γ(p)
−1

)−1
,A , XF

M-step : Γ(p+1) = arg max
γi>0

Q(Γ/Γ(p))

log p(y,h; Γ) = log p(y/h)
︸ ︷︷ ︸

not a func. of γi

+ log p(h; Γ)
︸ ︷︷ ︸

func. of γi

Upon convergence, many of the γi are driven to zero
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Proposed Algorithm
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The posterior pdf of h is estimated in the E-step

In the M-step, log p(y/h,X) is used to find the ML estimate
of X and log p(h; Γ) is used to find the ML estimate of γi
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Combined Algorithm

M−step:

E−step:

ΓML

arg maxX Eh/y,X(p),Γ(p)[log p(y/h;X)]

XML

arg maxΓ Eh/y,X(p),Γ(p)[log p(h; Γ)]

Eh/y,X(p),Γ(p)[log p(y, h;X, Γ)]

arg maxΓ,X{E-step}

Figure: Proposed Algorithm
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OFDM frame

SYMBOL 2SYMBOL 1 SYMBOL K

N subcarriers

. . .

hKh1 h2

. . .

Figure: OFDM frame

h1 = . . . = hK = h: Block fading scenario

hk = ρhk−1 + uk : Time-varying scenario
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Joint pdf:

p(Yp,K ,h1, . . . ,hK ;γ) =

K∏

k=1

p(yp,k |hk)p(hk |hk−1;γ),

where Yp,K = [yp,1, . . . , yp,K ] and p(h1|h0) , p(h1).
Optimization problem:

(P3) ĥ1, . . . , ĥK , γ̂ = arg min
h1,...,hK ,γ

f (h1, . . . ,hk ,γ),

where

f (h1, . . . ,hk ,γ) =
K∑

k=1

‖yp,k − Xp,kFphk‖
2
2

σ2 + K log |Γ|+ hH
1 Γ

−1h1

+(K − 1) log(1 − ρ2) +
K∑

k=2

(hk − ρhk−1)
HΓ−1(hk − ρhk−1)

(1 − ρ2)
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Measurement equation and the state equation:

yp,k = Φp,khk + vp,k ,

hk = ρhk−1 + uk , k = 1,2, . . . ,K
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If Γ is known:

Prediction: ĥk |k−1 = ρĥk−1|k−1

Pk |k−1 = ρ2Pk−1|k−1 + (1 − ρ2)Γ

Filtering: ĥk |k = ĥk |k−1 + Gk (yp,k −Φp,k ĥk |k−1)

Gk = Pk |k−1Φ
H
p,k

(

σ2IN +Φp,kPk |k−1Φ
H
p,k

)−1

Pk |k = (IL − GkΦp,k)Pk |k−1,

Smoothing: ĥk−1|k = ĥk−1|k−1 + Jk−1(ĥk |k − ĥk |k−1)

Pk−1|k = Pk−1|k−1 + Jk−1(Pk |k − Pk |k−1)J
H
k−1

where Jk−1 = ρPk−1|k−1P−1
k |k−1
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If Γ is unknown: use EM. The E and M steps are given by

E-step : Q(γ|γ(p)) = Eh1,...,hk |Yp,k ;γ(p)[log p(Yp,k ,h1, . . . ,hk ;γ)]

(1)

M-step : γ(p+1)(i) = arg max
γ(i)

Q(γ|γ(p)) i = 1, . . . ,L. (2)

The M-step given above results in the following optimization
problem.

Q(γ|γ(p)) = Ehk |Yp,k ;γ(p)



c −
k∑

j=2

(h j − ρh j−1)
HΓ−1(h j − ρh j−1)

2(1 − ρ2)

−
k
2

log |Γ| −
1
2

hH
1 Γ

−1h1

]
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EM-KSBL

The function to be maximized in the M-step is given by

Q(γ,Xk |γ
(p),X(p)

k ) = E
hk |Yk ;X

(p)
k ,γ(p)

[

c′′ −
k∑

j=1

‖y j − XjFh j‖
2

2σ2 −

k
2

log |Γ| −
k∑

j=2

(h j − ρh j−1)
HΓ−1(h j − ρh j−1)

2(1 − ρ2)
−

1
2

hH
1 Γ

−1h1

]

Expression above is a sum of terms: Q(γ|γ
(p)
k ) and

Q(Xk |X
(p)
k ) respectively
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K-SBL and EM-KSBL Algorithm

SYMBOL 2

EM−KSBL used for tracking the channel
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Predict: ĥk |k−1, Pk |k−1
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γ
(p)
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2

γ
(0)
2 = γ

pmax

1 γ
(0)
k = γ

pmax

k−1

ĥk−1|k , Pk−1|kĥ2|3, P2|3

ĥ1|1, P1|1

γ
(p)
1 , X(p)

1

Figure: Block Diagram depicting the EM-KSBL algorithm.
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Figure: MSE vs. SNR in a time-varying SISO-OFDM system,
fdTs = 0.001.
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Figure: SER vs. SNR in a time-varying SISO-OFDM system,
fdTs = 0.001.
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Figure: Number of iterations required for the proposed recursive
algorithms, as a function of the OFDM symbol index.
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Figure: MSE across an OFDM frame in a time-varying SISO-OFDM
system, fdTs = 0.001.
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