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OFDM System Model and EM Algorithm
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@ The received signal y is given by,

y = XFh +v
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Support Aware EM Algorithm for Channel Estimation
and Data Detection

E-step : Q (X/X®) = By xo (logp(y, h/X)/y, X))
M-step : X(P+1) = arg maxQ (X/X(p)>

@ logp(y,h/X)=logp(y/h,X) + logp(h)

Log Likelihood, func. of X  not a func. of X
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SBL for Channel Estimation
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@ h is sparse in time domain

@ h(i) ~ CN(0,~i), where ~; is a deterministic but unknown
hyperparameter

@ The sparsity profile: I' = diag(y1,72 - .- 7.), i.€., if the
diagonal entries 4 = 0, hj =0
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SBL for Basis Selection

E step : Q(T/T™) = Ey, y,re (log p(y, h:T))
p(h/y'r(p)) :N(Muzh)7 :U’:O'_zzhAHy

_1\ —1
o= (0 2ARA+ T A2 XF

M-step : FP*1) = arg mag)(Q(r/r(p))
%>

logp(y,h;T) = logp(y/h) +logp(h;T)

~
not a func. of ~; func. of ~;

Upon convergence, many of the ~; are driven to zero
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@ The posterior pdf of h is estimated in the E-step

@ In the M-step, logp(y/h, X) is used to find the ML estimate
of X'and logp(h;T) is used to find the ML estimate of
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Combined Algorithm

E-step: {Eh/y,x(m,rlm[bgp(y,h;xyr)] J

arg maxr x{E-step}

M-step:

[arg maxr Eh/y,X(P),F(P)[IOQ p(h; M) ] [arg maxy Eh/y,x(m,r(v)[mg p(y/h; X)] ]
XL

M

Figure: Proposed Algorithm
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OFDM frame

hy h, hk

SYMBOL 1 SYMBOL 2 . SYMBOL K

N

N subcarriers

Figure: OFDM frame

@ h; = ... = hyx = h: Block fading scenario
@ hy, = phy_1 + U, : Time-varying scenario
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@ Joint pdf:
K
P(Ypk:h1, . hiv) = [T p(pxlhi)p(hilhk—1; 7).
k=1

where Yo« = [Yp1,---,Ypk] and p(hi|hg) £ p(hy).
@ Optimization problem:

(P3)  hy,...,hg,5 = argmin f(hy,... . hg,5),
h17~~~7hK77

where

K o 2
Ypk — XpkFphi
f(hly---,hk,’Y):kZ Yo P I2

—1

+Klog ||+ hfr—th

K. (hx = ph—2)"T*(hy — phy_q)
+(K = 1) Iog(l—pZ)JrkZ::2 =
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Measurement equation and the state equation:

Ypk = Ppxhi + Vpk,
hy =phy_1+u, k=1,2,...,K
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If [ is known:
Prediction: ﬁk‘k_l = pﬁk_l‘k_l
Puk—1 = pPr_ak_1+ (1—p%)r
Filtering: A = Akk_1 + Gk(Ypk — Ppkhk_1)
Gk = Puk 10y (o2 + ¢p,kpk‘k_l¢g',k)_l
Puk = (IL — Gk®p x)Pkjk—1,
Smoothing: hy_1x = hx_gk—1 + Ik—1(Akk — k1)
Peotk = Proak-1+ Ik—1(Pik — Prk—1)d5_1
where Jy_; = pPk_l‘k_lPk_&_l
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If [ is unknown: use EM. The E and M steps are given by

E-step : Q(v[y™) = By Vpuir® 109 P (Yp i e, i )]

(1)

M-step : /P (i) = argmaxQ(~|y®) i=1,...,L. 2)
(i)

The M-step given above results in the following optimization
problem.

k —
(hj — phj_2)"T~1(hj — ph;_1)
QUYN®) = Epjy, vt [€ =D J 2(1 - p2)J J

=2

k

1, 4
—Elog\r\ — EhTr 1h1]
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@ The function to be maximized in the M-step is given by

k . _X. 12
Py _ ly; — XFhjl
Q(’Y’ th/(p)’ Xk ) - Ehk\Yk;Xﬁp)v‘Y(p) - J';l 202 B
K (hj - Phj—l)H r_l(hj - phj—l) 1 Hr—1
Elog|r|—j§2 2(1= ) —Ehlr hy

@ Expression above is a sum of terms: Q('y|fy|£p)) and
Q(Xk X)) respectively
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X T
AP, X P, X(Zi!) AP, x®

L 0l
estimate.

Figure: Block Diagram depicting the EM-KSBL algorithm.
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Figure: MSE vs. SNR in a time-varying SISO-OFDM system,
fqTs = 0.001.
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Figure: SER vs. SNR in a time-varying SISO-OFDM system,
fqTs = 0.001.

Ranjitha P K-SBL and EM-KSBL



OFDM System Model, EM and the SBL Algorithm
Proposed Algorithm

SBL for an OFDM Frame

Simulation Results

Sparse Bayesian Learning in OFDM Systems

Average Number of Iterations

0 5 10 15 20 25
OFDM Symbol Index

Figure: Number of iterations required for the proposed recursive
algorithms, as a function of the OFDM symbol index.
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Figure: MSE across an OFDM frame in a time-varying SISO-OFDM
system, fqTs = 0.001.
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Thank You

Ranjitha P K-SBL and EM-KSBL



	Sparse Bayesian Learning in OFDM Systems
	OFDM System Model, EM and the SBL Algorithm
	Proposed Algorithm
	SBL for an OFDM Frame
	Simulation Results


