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Introduction to Machine Learning

Learning the pattern in the data to find a rule to predict

Input patterns: xi,Xx2,...,Xm € X

Outputs: y1,x0,...,¥m €Y

Supervised learning and Unsupervised learning



Supervised Learning: Classification

e Training data: {(x1,y1),(x2,)2),..., (Xm,ym)} € X x {£1}
e Example: Binary Classification
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Supervised Learning: Regression

e Training data: {(x1,y1),(%2,¥2), -+, (Xm,y¥m)} € X X R

(c) Linear Regression (d) Non-linear Regression



Similarity in data

Goal: Learn a function that agrees with training data and
generalizes for unseen data

Given a new pattern x € X, chose a y s.t. (x,y) is similar to
training data

Need to map the input patterns to a space where the
similarity in data can be measured

k:XxX—>R

e k is symmetric, i.e. k(x,x") = k(x/, x)



Dot Product

Let x,x' € RN, simple similarity measure is (x,x’)

_ >
Ix]| = \/{x,x), cosf = m

Distance between two vectors x and z is ||x — z||

Map x € X to a space H where dot product is defined

If d: X — H,then k(x,x") = (x,x') =< ®(x), d(x") >



A Binary Pattern Recognition Example

¢+ and c_ are class means
4 , w:c+—c_andc:%
. y = sgn((x - c,w))
' y = sgn((x,c;) — (x—c_) + b)

y = 580(5r Xy 1 k(o 0) =

/i/ : %Ei:y,-:—l k(X,X,'))
="~ '= y = sgn(X7 aik(x, %) + b)

e Generally, PR algorithms have this form with kernels centered
on training examples

e All input patterns may not be used



Learning Theory

e Learning Theory helps in designing algorithm which choses a
function class that leads to small test error




Error in learning

e Let the (x,y) is drawn independently from unknown P(x,y),
and our prediction is f(x)

e Loss function: L;_y‘

e Empirical risk: Remp(f) = 5= > 11 |f(x) — y|
o Actual risk: R(f) =1 [|f(x) — y|dP(x,y)

e Small empirical risk doesn't imply small actual risk

e So function class of f is restricted to the one which has
capacity to suit amount of training data



Capacity concept: VC Dimension
e m input patterns can be labelled in 2™ ways

o A rich function class can realize all 2™ separations, then it is
said to shatter all m patterns

e VC Dimension: The largest number of input patterns h, that
a fuction class can shatter



VC Bound

e |If h < m, is the VC dimension of a function class that a
learning machine can implement, independent of P(x, y)
generating (x,y), with probabiltiy at least 1 — ¢
R(f) < Remp(f) + ¢(h, m,d) holds

where ¢(h, m, 6) = /£ (h(In 32 + 1) +In $)

e When P(x,y) = P(x)P(y) with £1 equally likely, no good
way to predict class of test pattern

e With a function class of large h, we can make training error
zero, but ¢(h, m, d) so test error is large

e To make non-trivial prediction about test error, function class
must be restricted



Support Vector Classification

e Vapnik considered the class of (linearly separable) hyperplanes
in H

i.e. wix+ b =0 where w € H and b € R correponding to
decision functions f(x) = sgn(w’x + b)
e Maximizing the separation between any training point and
hyperplane

e maxypmin{||x —x;|| : x € H,wix+b=0,i=1,...,m}



| have used slides from Prof. Yaser S. Abu-Mostafa's course
on SVMs.



Review of Lecture 13

e Validation
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Learning From Data

Yaser S. Abu-Mostafa
California Institute of Technology

Lecture 14: Support Vector Machines
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e Maximizing the margin

e [ he solution

e Nonlinear transforms
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Better linear separation

Linearly separable data

Different separating lines /

Which is best?

Two questions:
1. Why is bigger margin better?

2. Which w maximizes the margin?
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Remember the growth function?

All dichotomies with any line:
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Dichotomies with fat margin

Fat margins imply fewer dichotomies

L X ]

L O ]
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Finding w with large margin

Let x,, be the nearest data point to theplane w'x = 0. How far is it?

2 preliminary technicalities:

1. Normalize w:

wx,| =1

2. Pull out wy:

w = (wq, - ,wy) apartfrom b

The planeisnow |w'x+b=0]| (no xg)
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Computing the distance

The distance between x,, and the plane wx+0=0  where |[W'x,, +b| = 1

The vector w is L to the plane in the X space:

®X,

Take x” and x” on the plane W

wx +b=0 and wx"+b=0 /X

N

— w(x' —x")=0
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and the distance is ...

Distance between x,, and the plane:

=>

Take any point x on the plane

Projection of X, — X on W

W= = distance = w(x, — X)|
Nl
1 1 1
distance = —‘WTXn—WTX —‘WTXn—I—b—WTX—b‘ —
gl gl gl
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Learning From Data - Lecture 14

The optimization problem

1

Iw]]

Maximize

subject to min |w'x, +b] = 1
n=1,2,....IN

Notice: |W'x,, +b| = y, (W'x, + b)

1

Minimize 5 wW'w

subject to Yy, (WX, +b) >1 for n=1,2,...
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e Maximizing the margin

e [ he solution

e Nonlinear transforms
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Constrained optimization

Minimize  —w'w
subject to Yy, (W'x,+b)>1 for n=1,2,...,N

weRY beER

Lagrange?  inequality constraints = KKT
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We saw this before

Remember regularization?

Minimize Ei,(w) = ~ (Zw —y)"(Zw —y)

subject to: w'w < (C

V E.,, normal to constraint

optimize constrain
Regularization: E: W'W
SVM: W'W E,
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FE:, = const.
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ing From Data - Lectut

Lagrange formulation

1
Minimize L(w,b, ) = 5 W

w.rt. wand b and

e 14

W — Z an(Yn (WX, +b) —1)

n=1

maximize w.r.t. each o, > 0

N
VieL = w — Zanynxn: 0
n=1

oL al
~ Z AnlYn = 0
ob —

13/20



N
W = E A YnXnp
n=1

Substituting ...

and Zoznyn = 0

n=1
| N
in the Lagrangian L(w,b,a) = 5 WWwW —
n=1
N | NN
e o) =Y -5 23
Maximize w.r.t. to o subjectto a,, >0 for n=1,--- N




The solution - quadratic programming

Y1Y1 XiX1 Y1y XX ... YYN XiXN
, 1 XX XdXo ... XX
min = o | YRV XXT Y2l XoXs Y2YN X2XN | + (-1 a
. . . linear
UNY1 XNX1 YNY2 XNX9 ... YNYN XNXN

-—_

quadratic coefficients
subject to ya=0

linear constraint

0, < o < oo,
lower bounds upper bounds
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QP hands us o

Solution: ¢ = g, -+ , an E,, = const.

N
n=1

KKT condition: Form=1,--- ,N
o (Yp (WX, +0) —1) = 0

\We saw this beforel

a, >0 =— X, is a | support vector
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Support vectors

Closest x,,'s to the plane: achieve the margin

— Yo (W'X,+b) =1

Solve for b using any SV:

Yn (WX, +b) =1
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e Maximizing the margin

e [ he solution

e Nonlinear transforms
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7z Instead of x
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“Support vectors’ in X space

Support vectors live in Z space

In X space, ‘pre-images of support vectors
The margin is maintained in Z space

Generalization result

E|# of SV's]
N —1

E[Eout] S
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