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Outline

• Introduction to Regression and Linear Methods

• Linear Least Squares Problem

• Least Squares with Regularization

• Subset Selection

• Shrinkage Methods
• Ridge Regression
• Least Absolute Shrinkage and Selection Operator
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Machine Learning

• Learning from data

• Training set: (x(1), y (1)), (x(2), y (2)) . . . (x(N), y (N))

• x(i) ∈ X is i th input feature vector

• y (i) ∈ Y is i th ouput measurement
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• Regress: the act of reasoning backwards from effect to the
cause

• Regression Analysis: Learning the model that best describes
the relationship between the output measurements and the
corresponding input feature vector

• f : X → Y

• Purpose of the model: to predict output for new inputs
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Key questions in Regression (Machine Learning)

• What is the best f : X → Y that agrees with our data?

• What is the best f that generalizes for a new data point
x(new)?

• What are the efficient algorithms to find f ?
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Empirical Risk function

• C (f (x), y) - cost of using f (x) as an estimate of y

• Minimum expected risk

f ∗ = argmin
f

∫

X ,Y

C (f (x), y)p(x, y)dxdy

• Joint distribution p(x, y) is not known

• Minimum empirical risk

f ∗N = argmin
f

N
∑

i=1

C (f (x(i)), y (i))
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Cost Function and Class of Hypothesis Functions

• C (f (x), y) = (y − f (x))2

• Cost is high for large errors

• Linear model: f (x) = β0 + β1x1 + . . .+ βpxp = xTβ

• Cost function remains convex (quadratic) in βs
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Linear Methods

• Linear models are simple and interpretable (Linear algebra)

• Closed form solutions/efficient algorithms are available

• Non-linear problems can be transformed to linear problems

• Eg. f (x) = β0 + β1x1 + β2x
2
1 + β2x2 + β3x

2
2

[x1 x21 x2 x22 ]→ [z1 z2 z3 z4] ∈ R
4

g(z) = θ0 + θ1z1 + θ2z2 + θ3z3 + θ4z4 is linear in z
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Least Squares Problem

• β̂ = arg minβ
∑N

i=1(y
(i) − x(i)

T
β)2

• β̂ = arg minβ(y − Xβ)T (y − Xβ)

• X is N × p, i th row- input features of i th example, j th column-
j th input feature of all examples

• f (x) = xT β̂
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Solution to Least Squares Problem

• β̂ = (XTX)−1XTy

• N < p, XTX is not invertible

• N > p, XTX should be of full rank p for it to invertible

• Cause of non-invertibility: Redundant features or too many
features
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Gauss Markov Theorem

• How to test the goodness of the model? - Test data or
Probabilistic Model

• y = Xβ + w, w ∼ N (0, σ2)

• Least squares estimate is MVUE (E [β̂] = β)

• MSE [β̂] = Var(β̂) + (E [β̂]− β)2
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Need for Regularization

• Actual underlying model is not known

• Consider to fit a model
f (x) = β0 + β1x1 + β2x

2
1 + β2x

3
1 + β3x

4
1

• Let actual data be from a quadratic model

• Expected prediction error= σ2 +MSE [β̂]
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Good Fit
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Under Fit
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Over Fit
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Subset selection

• Problem with least square estimate
• Prediction accuracy: low bias but large variance

• Model interpretation: large number of predictors

• How to overcome
• Prediction accuracy: shrinking or setting some coefficients to

zero

• Determine a smaller subset that exhibit the strong effects

• “Big picture” of the model with sacrifice in small details
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Notion of subset selection

• Retain only a subset of the variables

• Least square regression: to estimate coefficients of the inputs
that are retained

• Different strategies to select the subset
• Best subset selection

• Forward and backward-stepwise selection

• Forward stagewise (FS) regression
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Best subset selection

• Finds for each k ∈ {0, 1, 2, ..., p} the subset of size k that
gives smallest residual sum of squares (RSS)

• Algorithm: leaps and bounds procedure (Furnival and Wilson,
1974)

• Works for p as large as 30 or 40

• How to choose k

• Involves the tradeoff between bias and variance

• Can be subjective

• Typically used: smallest model that minimizes an estimate of
the expected prediction error

• Need to search all possible subsets
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Forward and backward-stepwise selection

• Forward-stepwise selection
• Starts with intercept, and then sequentially adds into the

model the predictor that most improves the fit

• Builds the model sequentially by adding one variable at a time

• Backward-stepwise selection
• Starts with the full model, and sequentially deletes the

predictor that has the least impact on the fit

• Can be used only when N > p

• Forward stepwise can always be used
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Forward stagewise regression

• Cautious version of forward selection

• May take a large number of steps as it moves towards a final
model

• Notation:
X = [x1, . . . , xp]: n-vectors representing the features
xj : represents jth feature vector
y: vector of responses
β = [β1, . . . , βp]

T

• Total squared error:

S(β) =‖ y − µ ‖2, where µ = Xβ
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Algorithm

• Starts with µ = 0

• Let µ current stagewise estimate

• ĉ = XT (y − µ): vector of current correlation and cj :
proportional to the correlation between xj and current residual
vector

• Next step is taken in the direction of the greatest current
correlation

• j = arg max |ĉj | and µ← µ+ ǫsign(ĉj )xj

• This is continued till none of the variables have correlation
with the residuals
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Shrinkage methods

• Subset selection methods: discrete in nature

• Suffer from high variance

• Shrinkage methods: continuous in nature

• Don’t suffer much from high variability
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Ridge regression

• Shrinks the regression coefficients by imposing a penalty in
their sizes

• Minimize a penalized residual sum of squares

β̂ridge = arg minβ







p
∑

i=1



yi − β0 −

p
∑

j=1

xijβj





2

+ λ

p
∑

j=1

β2
j







where λ ≥ 0: controls the amount of shrinkage
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• Equivalent problem

β̂ridge = arg minβ

p
∑

i=1



yi − β0 −

p
∑

j=1

xijβj





2

sub. to

p
∑

j=1

β2
j ≤ t

• One to one correspondence between λ and t
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• Assuming the data is centered, β0 can be removed

• Residual sum of square:

RSS(λ) = (y − Xβ)T (y − Xβ) + λβTβ

• β̂ = (XTX+ λI)−1XTy

• One can find an estimate of β̂ even if XTX is singular
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Interpretation of ridge regression

• SVD: X = UDVT

• Least square fitted vector:

Xβ̂ls = X(XTX)−1XTy

= UUT y

• UT y: coordinates of y wrt orthonormal basis U
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• Ridge regression

Xβ̂ridge = X(XTX+ λI)−1XTy

= UD(D2 + λI)−1DUT y

=

p
∑

j=1

uj
d2
j

d2
j + λ

uTj y

where uj : jth column of U

• Computes the coordinates of y wrt the orthonormal basis U

and then it shrinks the coordinates by
d2
j

d2
j
+λ

• λ = 0: reduces to least square solution
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LASSO

• Subset selection: Can provide interpretable models but can be
extremely variable

• Ridge regression: More stable but does not give an easily
interpretable model

• Can we get best of both these models?
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• Shrinks some coefficients and sets other to 0

• Retains good features of ridge regression and subset selection

• Hence, named as LASSO (Least absolute shrinkage and
selection operator)

• In the signal processing literature, the LASSO is also known
as basis pursuit
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• LASSO estimate

β̂LASSO = arg minβ







p
∑

i=1



yi −

p
∑

j=1

xijβj





2

+ λ

p
∑

j=1

|βj |







• Equivalent problem

β̂LASSO = arg minβ

p
∑

i=1



yi −

p
∑

j=1

xijβj





2

sub. to

p
∑

j=1

|βj | ≤ t
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• Parameter t: controls the amount of shrinkage

• Let β̂ls
j : ordinary least square estimate and t0 =

∑

|β̂ls
j |

• If t > t0, then LASSO estimates are the β̂ls
j

• If t = t0
2 , then the least squares coefficients are shrunk by

about 50%

• Making t sufficiently small will cause some of the coefficients
to be exactly zero
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• No closed form expression

• Solution of LASSO: quadratic programming problem

• Efficient algorithm: LAR (Least angle regression)
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Orthonormal design case

• Ridge regression: β̂ridge
j =

β̂ls
j

1+λ

• Performs a proportional shrinkage

• LASSO: β̂LASSO
j = sgn(βls

j )(|β
ls
j | −

λ
2 )

+

• Performs soft thresholding
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Summary
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