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Introduction to Regression and Linear Methods

Linear Least Squares Problem

Least Squares with Regularization

Subset Selection

Shrinkage Methods
o Ridge Regression
o |Least Absolute Shrinkage and Selection Operator
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Least squares

Machine Learning

Learning from data

Training set: (x(l),y(l)), (X(z)’y(z)).“(X(N)7y(N))

e x() € X is i" input feature vector

o y() € Yis ith ouput measurement
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Least squares

AGE SEX BMI BP -++ Serum Measurements - - - Response
Patient | x1 x2 x3 x4 x5 x6 x7r x8 x9 x10 y
1 59 2 321 101 157 932 38 4 49 87 151
2 48 i 21.6 87 183 1032 70 3 39 69 75
3 72 2 305 93 156 936 41 4 47 85 141
4 24 1 253 84 198 1314 40 5 49 89 206
5 50 i 23.0 101 192 1254 52 4 43 80 135
6 23 i) 2 42 68 97

22.6 89 139 648 61

441 36 1 30,0 95 201 1252 42 5 51 85 220
442 36 1 196 71 250 1332 97 3 46 92 57

Table 1. Diabetes study. 442 diabetes patients were measured on 10 baseline variables. A
prediction model was desired for the response variable, a measure of disease progression one year
after baseline.
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Least squares

o Regress: the act of reasoning backwards from effect to the
cause

o Regression Analysis: Learning the model that best describes
the relationship between the output measurements and the
corresponding input feature vector

o f: X =Y

e Purpose of the model: to predict output for new inputs
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Least squares

Key questions in Regression (Machine Learning)

o What is the best f : X — ) that agrees with our data?

e What is the best f that generalizes for a new data point
x(new)?

e What are the efficient algorithms to find f?
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Least squares

Empirical Risk function

e C(f(x),y) - cost of using f(x) as an estimate of y

e Minimum expected risk

f*=arg min/ C(f(x), y)p(x,y)dxdy
f X,y

)

e Joint distribution p(x, y) is not known

e Minimum empirical risk

N
fy = arg mfin z_; C(f(x(’)),y(’))
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Least squares

Cost Function and Class of Hypothesis Functions

C(f(x).y) = (y = f(x))?

Cost is high for large errors

Linear model: f(x) = Bo + Bix1 + ...+ Bpxp =x' 3

Cost function remains convex (quadratic) in fs
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Least squares

Linear Methods

Linear models are simple and interpretable (Linear algebra)

Closed form solutions/efficient algorithms are available

Non-linear problems can be transformed to linear problems

Eg. f(x) = fo+ Pix1 + ﬁ2X12 + Boxo + 53x22
[x1 X2 x2 x3] = [21 22 z3 z4] € R?

g(z) =6y + 0121 + 0220 + 0323 + O4z4 is linear in z
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Least squares

Least Squares Problem

o B=argming "N, (y1) —x(D7 g)2
e B=arg ming(y — XB)"(y — XB)

e Xis N x p, it row- input features of i*" example, j column-

jt input feature of all examples

. () =xTP
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Least squares

Solution to Least Squares Problem

B =(XTX)"'XTy
e N < p, XX is not invertible

e N > p, XX should be of full rank p for it to invertible

Cause of non-invertibility: Redundant features or too many
features
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Least squares

Gauss Markov Theorem

How to test the goodness of the model? - Test data or
Probabilistic Model

y=X8+w, w~N(0,0?)

Least squares estimate is MVUE (E[5] = f)

MSE[B] = Var(3) + (E[5] - B)?
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Least squares

Need for Regularization

Actual underlying model is not known

Consider to fit a model
f(x) = Bo + Bix1 + ﬁlez + ﬁzxf’ + Baxi

Let actual data be from a quadratic model

Expected prediction error= o2 + MSE[f]
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Least squares

Good Fit

b
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Least squares

Under Fit
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Least squares

Over Fit
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Subset selection

Subset selection

e Problem with least square estimate

o Prediction accuracy: low bias but large variance

o Model interpretation: large number of predictors
e How to overcome

e Prediction accuracy: shrinking or setting some coefficients to
zero

e Determine a smaller subset that exhibit the strong effects

e "Big picture” of the model with sacrifice in small details
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Subset selection

AGE SEX BMI BP -++ Serum Measurements - - - Response
Patient | x1 x2 x3 x4 x5 x6 x7r x8 x9 x10 y
1 59 2 321 101 157 932 38 4 49 87 151
2 48 i 21.6 87 183 1032 70 3 39 69 75
3 72 2 305 93 156 936 41 4 47 85 141
4 24 1 253 84 198 1314 40 5 49 89 206
5 50 i 23.0 101 192 1254 52 4 43 80 135
6 23 i) 2 42 68 97

22.6 89 139 648 61

441 36 1 30,0 95 201 1252 42 5 51 85 220
442 36 1 196 71 250 1332 97 3 46 92 57

Table 1. Diabetes study. 442 diabetes patients were measured on 10 baseline variables. A
prediction model was desired for the response variable, a measure of disease progression one year
after baseline.

Linear Methods for Regression Parthajit and Venu



Subset selection

Notion of subset selection

e Retain only a subset of the variables

o Least square regression: to estimate coefficients of the inputs
that are retained

e Different strategies to select the subset
e Best subset selection

e Forward and backward-stepwise selection

e Forward stagewise (FS) regression
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Subset selection

Best subset selection

e Finds for each k € {0,1,2, ..., p} the subset of size k that
gives smallest residual sum of squares (RSS)

Algorithm: leaps and bounds procedure (Furnival and Wilson,
1974)

Works for p as large as 30 or 40

How to choose k

e Involves the tradeoff between bias and variance
o Can be subjective

e Typically used: smallest model that minimizes an estimate of
the expected prediction error

Need to search all possible subsets
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Subset selection

Forward and backward-stepwise selection

o Forward-stepwise selection

o Starts with intercept, and then sequentially adds into the
model the predictor that most improves the fit

o Builds the model sequentially by adding one variable at a time
o Backward-stepwise selection

o Starts with the full model, and sequentially deletes the
predictor that has the least impact on the fit

e Can be used only when N > p

o Forward stepwise can always be used
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Subset selection

Forward stagewise regression

Cautious version of forward selection

May take a large number of steps as it moves towards a final
model

Notation:

X =[x1,...,Xp]: n-vectors representing the features
x;j: represents jth feature vector

y: vector of responses

B=[Br,....5]"

Total squared error:

S(B) =l'y — p |1, where u=Xp
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Subset selection

Algorithm

e Starts with 4y =0
o Let u current stagewise estimate

o &= XT(y— u): vector of current correlation and ¢;:
proportional to the correlation between x; and current residual
vector

o Next step is taken in the direction of the greatest current
correlation

e j = arg max |G| and < p + esign(&j)x;

e This is continued till none of the variables have correlation
with the residuals
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Shrinkage methods

Shrinkage methods

Subset selection methods: discrete in nature

Suffer from high variance

Shrinkage methods: continuous in nature

Don't suffer much from high variability
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Shrinkage methods

Ridge regression

e Shrinks the regression coefficients by imposing a penalty in
their sizes

e Minimize a penalized residual sum of squares
2
) P P P
Bridge = arg ming ¢ > | yi = Bo = > x| +AD 57
j=1

i=1 j=1

where A > 0: controls the amount of shrinkage
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Shrinkage methods

e Equivalent problem

2
/Brldge = arg mm/j’ Z Yi — /BO - ZXU/BJ
i=1 j=1
p
sub. toZﬁf <t
j=1

e One to one correspondence between A and t
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Shrinkage methods

e Assuming the data is centered, Sy can be removed

Residual sum of square:
RSS(A) = (y — XB)T(y — XB8) + A\37 3

B=(XTX+A)"1XTy

One can find an estimate of 3 even if X7 X is singular
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Shrinkage methods

Interpretation of ridge regression
e SVD: X =UDV'

o Least square fitted vector:

XBs =X(XTX)"IxTy
—Uu'y

e UTy: coordinates of y wrt orthonormal basis U
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Shrinkage methods

e Ridge regression

XBridge = X(XTX+AM)"IXTy
= UD(D? + Al)"'DUTy
P d2
J T
= Z“J’ 2 WY
SR+

where u;: jth column of U

e Computes the coordinates of y wrt the orthonormal basis U
2

. . . d
and then it shrinks the coordinates by d2jr)\
'

e )\ = 0: reduces to least square solution
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LASSO

e Subset selection: Can provide interpretable models but can be
extremely variable

o Ridge regression: More stable but does not give an easily
interpretable model

e Can we get best of both these models?
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e Shrinks some coefficients and sets other to 0
e Retains good features of ridge regression and subset selection

e Hence, named as LASSO (Least absolute shrinkage and
selection operator)

e In the signal processing literature, the LASSO is also known
as basis pursuit
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e LASSO estimate

BLasso = arg ming Yi—

p
1 p

p
1 ]J=

2
P

xiBj | + XD 18]

1 j=1

e Equivalent problem

2

P P
Biasso = arg ming > [ yi = x5

i=1 j=1

p
sub. toZ\ﬂj\ <t

Jj=1
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e Parameter t: controls the amount of shrinkage
o Let BJ'-S: ordinary least square estimate and to = ) \BJ'S\

o If t > tp, then LASSO estimates are the ﬁj's

o If t = %0 then the least squares coefficients are shrunk by

about 50%

e Making t sufficiently small will cause some of the coefficients
to be exactly zero
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e No closed form expression
e Solution of LASSO: quadratic programming problem

e Efficient algorithm: LAR (Least angle regression)
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Orthonormal design case

. Als
. . . pHridge /5']-
Ridge regression: ﬁj X

Performs a proportional shrinkage

LASSO: G50 = sgn(5F)(I5f| - 3)*

Performs soft thresholding

Linear Methods for Regression Parthajit and Venu



Summary
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