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Support recovery from multiple samples

m Samples X1,..., X, from R? with a common support S of size k

X1 Xo X3 Xn

m Observe low dimensional projections of each sample

Y; P, € Rmxd X; W;
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A generative model for the data

Define Sy 4 = {u € {0,1}¢ : |supp(u)| = k}
m A generative model for the data
X YN, K)), ieln],

where A € Sy, g and K = diag())
Note that supp(X;) = supp()\) s vie [n] a.s.

m A single sample is sufficient to recover S if m = O(klog(d — k))

What happens when m < k7 Can we still recover the support if we
have access to multiple samples?
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Sample complexity of support recovery

m Assumptions
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Sample complexity of support recovery

m Assumptions
m The entries of X;, i € [n], are independent and zero-mean with
E [X7] = Aj for X € Sy.q and Xi; ~ subG(c);), where ¢ is an
absolute constant
m The entries of ®;, i € [n], are independent and zero-mean with
E [®;(u,v)?] = 1/m, ®;(u,v) ~ subG(c'/m), and
E [®;(u,v)*] = ¢’ /m?, where ¢/ and ¢’ are absolute constants

m For m < k/2 and k < d — 1, the sample complexity of support
recovery under the asuumptions above is

k2
n*(m,k,d) = g log(k(d — k)).
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Previous work

m Work in the multiple sample setting has mostly focused on the
m > k case
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Previous work

m Work in the multiple sample setting has mostly focused on the
m > k case

m Recent work! showed possibity of operating in m < k regime when
multiple samples available, however sample complxity not fully
characterized

m Also connections to literature on covariance estimation?:?

'Piya Pal and P. P. Vaidyanathan. “Pushing the Limits of Sparse Support
Recovery Using Correlation Information”. In: /EEE Trans. on Sig. Proc. 63.3
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The estimator

m Based on estimating variance along each coordinate
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The estimator

m Based on estimating variance along each coordinate
m Compute for all 7 € [d]

n
§ ]2] 7

j=1
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where ®;; is the ith column of ®;
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The estimator

m Based on estimating variance along each coordinate
m Compute for all 7 € [d]

(®);Y;)%,

Ji=J
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where ®;; is the ith column of ®;

= Sort the entries of A: 5\(1) > 2> A
Output S = {(1),...,(k)}
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Performance of the estimator

» Hard to analyze S, we analyze the folowing threshold-based
estimator:

S = supp(]l{j\>7}),

since P(S # S) < P(S # 5)
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Performance of the estimator

» Hard to analyze S, we analyze the folowing threshold-based
estimator:

S = supp(]l{j\>7}),
since P(S # S) < P(S # 5)
m Here 7 is an appropriately chosen threshold (and can depend on S)

m Probability of error
PYPE£5 <Y PA<n)+ Y PA>7)

€S eS¢

Analysis based on tail bounds for X based on
subgaussian/subexponential concentration inequalities
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Performance of the estimator

m Key step in the analysis: P, can be made small if the following
separation condition holds for all (i,i') € S x S¢

Wi — Vi 2 [y + Vi

where
Wi, i mean of the estimator conditioned on ®7
v;, vyr: deviation terms arising from concentration bounds
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Performance of the estimator

m Key step in the analysis: P, can be made small if the following
separation condition holds for all (i,i') € S x S¢

Wi — Vi 2 [y + Vi

where
Wi, i mean of the estimator conditioned on ®7
v;, vyr: deviation terms arising from concentration bounds

m Condition fails to hold for n = 1, recovery requires n > 1 when
m <k
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Phase

Probability of exact support recovery
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Figure 1: Phase transition
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of the closed-form estimator.
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Lower bound

m Construct a set of k(d — k) supports that are difficult to
distinguish and use Fano’s method
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Lower bound

m Construct a set of k(d — k) supports that are difficult to
distinguish and use Fano’s method

m Construction: Start with Sp = {1,...,k}, create a set of supports
G by removing i € {1,...,k} and adding j € {k+1,...,d}

m Let U be uniformly distributed over G. By Fano’s inequality

. I(YU) +1
o 10U 1
PISAU) 21 = hd—h)
o maxseG D(PY“|SHPY"\SO> +1
= log(k(d — k))
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Lower bound

m For fixed ®7, the divergence term depends on the eigenvalues {a;}
and {b;} of 5Pg and Pg5, P&

m

n
D(Pynisan[Pynisoen) < 5 Z
=1
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Lower bound

m For fixed ®7, the divergence term depends on the eigenvalues {a;}
and {b;} of 5Pg and Pg5, P&

m

n
D(Pynisan[Pynisoen) < 5 Z
=1

m Using results on the spectra of Gaussian random matrices and a
few other tools, it can be shown that

2

cnm
D(PynislPyns,) < 20— m/h)

This gives the required scaling of n.
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Summary and extensions

m Multiple samples make support recovery possible with very few
measurements per sample (m < k)
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Summary and extensions

m Multiple samples make support recovery possible with very few
measurements per sample (m < k)

m Can look at more general settings with nonbinary variance and
changing support

m Current estimator requires knowledge of an upper bound on &

m Can first try to estimate k using observations, and then use our
estimator

m Other estimators with similar sample complexity
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