# Sample-Measurement Tradeoff in Support Recovery Under a Subgaussian Prior

#### Lekshmi Ramesh Chandra R. Murthy Himanshu Tyagi



Indian Institute of Science Bangalore

# Support recovery from multiple samples

• Samples  $X_1, \ldots, X_n$  from  $\mathbb{R}^d$  with a common support S of size k



# Support recovery from multiple samples

• Samples  $X_1, \ldots, X_n$  from  $\mathbb{R}^d$  with a common support S of size k



 $X_1 \quad X_2 \quad X_3 \qquad \qquad X_n$ 

• Observe low dimensional projections of each sample



• Define 
$$S_{k,d} = \{u \in \{0,1\}^d : |\operatorname{supp}(u)| = k\}$$

• Define 
$$S_{k,d} = \{u \in \{0,1\}^d : |\operatorname{supp}(u)| = k\}$$

• A generative model for the data

$$X_i \stackrel{iid}{\sim} \mathcal{N}(0, K_\lambda), \quad i \in [n],$$

where  $\lambda \in S_{k,d}$  and  $K_{\lambda} = \operatorname{diag}(\lambda)$ Note that  $\operatorname{supp}(X_i) = \operatorname{supp}(\lambda) \stackrel{\text{def}}{=} S, \quad \forall i \in [n] \text{ a.s.}$ 

• Define 
$$S_{k,d} = \{u \in \{0,1\}^d : |\operatorname{supp}(u)| = k\}$$

• A generative model for the data

$$X_i \stackrel{iid}{\sim} \mathcal{N}(0, K_\lambda), \quad i \in [n],$$

where  $\lambda \in S_{k,d}$  and  $K_{\lambda} = \operatorname{diag}(\lambda)$ Note that  $\operatorname{supp}(X_i) = \operatorname{supp}(\lambda) \stackrel{\text{def}}{=} S, \quad \forall i \in [n] \text{ a.s.}$ 

• A single sample is sufficient to recover S if  $m = O(k \log(d - k))$ 

• Define 
$$S_{k,d} = \{u \in \{0,1\}^d : |\operatorname{supp}(u)| = k\}$$

• A generative model for the data

$$X_i \stackrel{iid}{\sim} \mathcal{N}(0, K_\lambda), \quad i \in [n],$$

where  $\lambda \in S_{k,d}$  and  $K_{\lambda} = \operatorname{diag}(\lambda)$ Note that  $\operatorname{supp}(X_i) = \operatorname{supp}(\lambda) \stackrel{\text{def}}{=} S, \quad \forall i \in [n] \text{ a.s.}$ 

- A single sample is sufficient to recover S if  $m = O(k \log(d k))$
- What happens when m < k? Can we still recover the support if we have access to multiple samples?

Assumptions

#### Assumptions

• The entries of  $X_i$ ,  $i \in [n]$ , are independent and zero-mean with  $\mathbb{E}\left[X_{ij}^2\right] = \lambda_j$  for  $\lambda \in S_{k,d}$  and  $X_{ij} \sim \text{subG}(c\lambda_j)$ , where c is an absolute constant

#### Assumptions

- The entries of  $X_i$ ,  $i \in [n]$ , are independent and zero-mean with  $\mathbb{E}\left[X_{ij}^2\right] = \lambda_j$  for  $\lambda \in S_{k,d}$  and  $X_{ij} \sim \text{subG}(c\lambda_j)$ , where c is an absolute constant
- The entries of  $\Phi_i$ ,  $i \in [n]$ , are independent and zero-mean with  $\mathbb{E}\left[\Phi_i(u,v)^2\right] = 1/m$ ,  $\Phi_i(u,v) \sim \mathrm{subG}(c'/m)$ , and  $\mathbb{E}\left[\Phi_i(u,v)^4\right] = c''/m^2$ , where c' and c'' are absolute constants

#### Assumptions

- The entries of  $X_i$ ,  $i \in [n]$ , are independent and zero-mean with  $\mathbb{E}\left[X_{ij}^2\right] = \lambda_j$  for  $\lambda \in S_{k,d}$  and  $X_{ij} \sim \text{subG}(c\lambda_j)$ , where c is an absolute constant
- The entries of  $\Phi_i$ ,  $i \in [n]$ , are independent and zero-mean with  $\mathbb{E}\left[\Phi_i(u,v)^2\right] = 1/m$ ,  $\Phi_i(u,v) \sim \operatorname{subG}(c'/m)$ , and  $\mathbb{E}\left[\Phi_i(u,v)^4\right] = c''/m^2$ , where c' and c'' are absolute constants
- For m < k/2 and k < d 1, the sample complexity of support recovery under the assumptions above is

$$n^*(m,k,d) = \frac{k^2}{m^2} \log(k(d-k)).$$

#### Previous work

• Work in the multiple sample setting has mostly focused on the m > k case

<sup>2</sup>M. Azizyan, A. Krishnamurthy, and A. Singh. "Extreme Compressive Sampling for Covariance Estimation". In: 64.12 (Dec. 2018), pp. 7613–7635.

<sup>3</sup>T. Tony Cai and Anru Zhang. "ROP: Matrix recovery via rank-one projections". In: *The Annal of Statistics* 43.1 (2015), pp. 102–138.

<sup>&</sup>lt;sup>1</sup>Piya Pal and P. P. Vaidyanathan. "Pushing the Limits of Sparse Support Recovery Using Correlation Information". In: *IEEE Trans. on Sig. Proc.* 63.3 (2015), pp. 711–726.

#### Previous work

- $\blacksquare$  Work in the multiple sample setting has mostly focused on the m>k case
- Recent work<sup>1</sup> showed possibity of operating in m < k regime when multiple samples available, however sample complxity not fully characterized

<sup>2</sup>M. Azizyan, A. Krishnamurthy, and A. Singh. "Extreme Compressive Sampling for Covariance Estimation". In: 64.12 (Dec. 2018), pp. 7613–7635.

<sup>3</sup>T. Tony Cai and Anru Zhang. "ROP: Matrix recovery via rank-one projections". In: *The Annal of Statistics* 43.1 (2015), pp. 102–138.

<sup>&</sup>lt;sup>1</sup>Piya Pal and P. P. Vaidyanathan. "Pushing the Limits of Sparse Support Recovery Using Correlation Information". In: *IEEE Trans. on Sig. Proc.* 63.3 (2015), pp. 711–726.

#### Previous work

- Work in the multiple sample setting has mostly focused on the m > k case
- Recent work<sup>1</sup> showed possibity of operating in m < k regime when multiple samples available, however sample complxity not fully characterized
- Also connections to literature on covariance estimation<sup>2,3</sup>

<sup>&</sup>lt;sup>1</sup>Piya Pal and P. P. Vaidyanathan. "Pushing the Limits of Sparse Support Recovery Using Correlation Information". In: *IEEE Trans. on Sig. Proc.* 63.3 (2015), pp. 711–726.

<sup>&</sup>lt;sup>2</sup>M. Azizyan, A. Krishnamurthy, and A. Singh. "Extreme Compressive Sampling for Covariance Estimation". In: 64.12 (Dec. 2018), pp. 7613–7635.

<sup>&</sup>lt;sup>3</sup>T. Tony Cai and Anru Zhang. "ROP: Matrix recovery via rank-one projections". In: *The Annal of Statistics* 43.1 (2015), pp. 102–138.

#### Based on estimating variance along each coordinate

Based on estimating variance along each coordinate
Compute for all  $i \in [d]$ 

$$\tilde{\lambda}_i = \frac{1}{n} \sum_{j=1}^n (\Phi_{ji}^\top Y_j)^2,$$

where  $\Phi_{ji}$  is the *i*th column of  $\Phi_j$ 

■ Based on estimating variance along each coordinate
■ Compute for all i ∈ [d]

$$\tilde{\lambda}_i = \frac{1}{n} \sum_{j=1}^n (\Phi_{ji}^\top Y_j)^2,$$

where  $\Phi_{ji}$  is the *i*th column of  $\Phi_j$ 

• Sort the entries of  $\tilde{\lambda}$ :  $\tilde{\lambda}_{(1)} \ge \cdots \ge \tilde{\lambda}_{(d)}$ Output  $\tilde{S} = \{(1), \dots, (k)\}$ 

## Performance of the estimator

• Hard to analyze  $\tilde{S}$ , we analyze the following threshold-based estimator:

$$\hat{S} = \mathtt{supp} \bigg( \mathbbm{1}_{\{\tilde{\lambda} > \tau\}} \bigg),$$

since  $\mathbf{P}(\tilde{S} \neq S) \leq \mathbf{P}(\hat{S} \neq S)$ 

## Performance of the estimator

• Hard to analyze  $\tilde{S}$ , we analyze the following threshold-based estimator:

$$\hat{S} = \mathtt{supp} \bigg( \mathbbm{1}_{\{\tilde{\lambda} > \tau\}} \bigg),$$

since  $\mathbf{P}(\hat{S} \neq S) \leq \mathbf{P}(\hat{S} \neq S)$ 

• Here  $\tau$  is an appropriately chosen threshold (and can depend on S)

### Performance of the estimator

• Hard to analyze  $\tilde{S}$ , we analyze the following threshold-based estimator:

$$\hat{S} = \operatorname{supp} \left( \mathbbm{1}_{\{\tilde{\lambda} > \tau\}} \right),$$

since  $\mathbf{P}(\hat{S} \neq S) \leq \mathbf{P}(\hat{S} \neq S)$ 

- Here  $\tau$  is an appropriately chosen threshold (and can depend on S)
- Probability of error

$$P_e \stackrel{\text{def}}{=} \mathbf{P}(\hat{S} \neq S) \leq \sum_{i \in S} \mathbf{P}(\tilde{\lambda} < \tau) + \sum_{i \in S^c} \mathbf{P}(\tilde{\lambda} \geq \tau)$$

Analysis based on tail bounds for  $\tilde{\lambda}$  based on subgaussian/subexponential concentration inequalities • Key step in the analysis:  $P_e$  can be made small if the following separation condition holds for all  $(i, i') \in S \times S^c$ 

$$\mu_i - \nu_i \ge \mu_{i'} + \nu_{i'}$$

where

 $\mu_i, \ \mu_{i'}$ : mean of the estimator conditioned on  $\Phi_1^n$  $\nu_i, \ \nu_{i'}$ : deviation terms arising from concentration bounds • Key step in the analysis:  $P_e$  can be made small if the following separation condition holds for all  $(i, i') \in S \times S^c$ 

$$\mu_i - \nu_i \ge \mu_{i'} + \nu_{i'}$$

where

 $\mu_i, \ \mu_{i'}$ : mean of the estimator conditioned on  $\Phi_1^n$  $\nu_i, \ \nu_{i'}$ : deviation terms arising from concentration bounds

Condition fails to hold for n=1, recovery requires n>1 when m < k

#### Phase transition



Figure 1: Phase transition of the closed-form estimator.

• Construct a set of k(d-k) supports that are difficult to distinguish and use Fano's method

- Construct a set of k(d-k) supports that are difficult to distinguish and use Fano's method
- Construction: Start with  $S_0 = \{1, \dots, k\}$ , create a set of supports G by removing  $i \in \{1, \dots, k\}$  and adding  $j \in \{k + 1, \dots, d\}$

- Construct a set of k(d-k) supports that are difficult to distinguish and use Fano's method
- Construction: Start with  $S_0 = \{1, \dots, k\}$ , create a set of supports G by removing  $i \in \{1, \dots, k\}$  and adding  $j \in \{k + 1, \dots, d\}$
- Let U be uniformly distributed over G. By Fano's inequality

$$P(\hat{S} \neq U) \ge 1 - \frac{I(Y_1^n; U) + 1}{\log(k(d - k))} \\ \ge 1 - \frac{\max_{S \in G} D(P_{Y^n|S} || P_{Y^n|S_0}) + 1}{\log(k(d - k))}$$

• For fixed  $\Phi_1^n$ , the divergence term depends on the eigenvalues  $\{a_i\}$ and  $\{b_i\}$  of  $\Phi_S \Phi_S^{\top}$  and  $\Phi_{S_0} \Phi_{S_0}^{\top}$ 

$$D(\mathbf{P}_{Y^{n}|S,\Phi^{n}} \| \mathbf{P}_{Y^{n}|S_{0},\Phi^{n}}) \leq \frac{n}{2} \sum_{i=1}^{m} \frac{(a_{i} - b_{i})^{2}}{a_{i}b_{i}}$$

• For fixed  $\Phi_1^n$ , the divergence term depends on the eigenvalues  $\{a_i\}$ and  $\{b_i\}$  of  $\Phi_S \Phi_S^{\top}$  and  $\Phi_{S_0} \Phi_{S_0}^{\top}$ 

$$D(\mathbf{P}_{Y^{n}|S,\Phi^{n}} \| \mathbf{P}_{Y^{n}|S_{0},\Phi^{n}}) \leq \frac{n}{2} \sum_{i=1}^{m} \frac{(a_{i} - b_{i})^{2}}{a_{i}b_{i}}$$

• Using results on the spectra of Gaussian random matrices and a few other tools, it can be shown that

$$D(\mathbf{P}_{Y^n|S} \| \mathbf{P}_{Y^n|S_0}) \le \frac{cnm^2}{k^2(1-m/k)^4}$$

This gives the required scaling of n.

■ Multiple samples make support recovery possible with very few measurements per sample (m < k)

- Multiple samples make support recovery possible with very few measurements per sample (m < k)
- Can look at more general settings with nonbinary variance and changing support

- Multiple samples make support recovery possible with very few measurements per sample (m < k)
- Can look at more general settings with nonbinary variance and changing support
- $\blacksquare$  Current estimator requires knowledge of an upper bound on k

- Multiple samples make support recovery possible with very few measurements per sample (m < k)
- Can look at more general settings with nonbinary variance and changing support
- Current estimator requires knowledge of an upper bound on k
  - $\blacksquare$  Can first try to estimate k using observations, and then use our estimator

- Multiple samples make support recovery possible with very few measurements per sample (m < k)
- Can look at more general settings with nonbinary variance and changing support
- Current estimator requires knowledge of an upper bound on k
  - $\blacksquare$  Can first try to estimate k using observations, and then use our estimator
  - Other estimators with similar sample complexity