Sample-Measurement Tradeoff in Support Recovery Under a Subgaussian Prior

Lekshmi Ramesh Chandra R. Murthy Himanshu Tyagi

Indian Institute of Science
Bangalore

Support recovery from multiple samples

■ Samples X_{1}, \ldots, X_{n} from \mathbb{R}^{d} with a common support S of size k

$$
\begin{array}{cccc}
X_{1} & X_{2} & X_{3} & X_{n}
\end{array}
$$

Support recovery from multiple samples

■ Samples X_{1}, \ldots, X_{n} from \mathbb{R}^{d} with a common support S of size k

$$
\begin{array}{cccc}
X_{1} & X_{2} & X_{3} & X_{n}
\end{array}
$$

- Observe low dimensional projections of each sample

A generative model for the data

■ Define $S_{k, d}=\left\{u \in\{0,1\}^{d}:|\operatorname{supp}(u)|=k\right\}$

A generative model for the data

■ Define $S_{k, d}=\left\{u \in\{0,1\}^{d}:|\operatorname{supp}(u)|=k\right\}$

- A generative model for the data

$$
X_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, K_{\lambda}\right), \quad i \in[n],
$$

where $\lambda \in S_{k, d}$ and $K_{\lambda}=\operatorname{diag}(\lambda)$
Note that $\operatorname{supp}\left(X_{i}\right)=\operatorname{supp}(\lambda) \stackrel{\text { def }}{=} S, \quad \forall i \in[n]$ a.s.

A generative model for the data

■ Define $S_{k, d}=\left\{u \in\{0,1\}^{d}:|\operatorname{supp}(u)|=k\right\}$

- A generative model for the data

$$
X_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, K_{\lambda}\right), \quad i \in[n],
$$

where $\lambda \in S_{k, d}$ and $K_{\lambda}=\operatorname{diag}(\lambda)$
Note that $\operatorname{supp}\left(X_{i}\right)=\operatorname{supp}(\lambda) \stackrel{\text { def }}{=} S, \quad \forall i \in[n]$ a.s.

- A single sample is sufficient to recover S if $m=O(k \log (d-k))$

A generative model for the data

■ Define $S_{k, d}=\left\{u \in\{0,1\}^{d}:|\operatorname{supp}(u)|=k\right\}$

- A generative model for the data

$$
X_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, K_{\lambda}\right), \quad i \in[n],
$$

where $\lambda \in S_{k, d}$ and $K_{\lambda}=\operatorname{diag}(\lambda)$
Note that $\operatorname{supp}\left(X_{i}\right)=\operatorname{supp}(\lambda) \stackrel{\text { def }}{=} S, \quad \forall i \in[n]$ a.s.

- A single sample is sufficient to recover S if $m=O(k \log (d-k))$

■ What happens when $m<k$? Can we still recover the support if we have access to multiple samples?

Sample complexity of support recovery

- Assumptions

Sample complexity of support recovery

- Assumptions
- The entries of $X_{i}, i \in[n]$, are independent and zero-mean with $\mathbb{E}\left[X_{i j}^{2}\right]=\lambda_{j}$ for $\lambda \in S_{k, d}$ and $X_{i j} \sim \operatorname{subG}\left(c \lambda_{j}\right)$, where c is an absolute constant

Sample complexity of support recovery

- Assumptions
- The entries of $X_{i}, i \in[n]$, are independent and zero-mean with $\mathbb{E}\left[X_{i j}^{2}\right]=\lambda_{j}$ for $\lambda \in S_{k, d}$ and $X_{i j} \sim \operatorname{subG}\left(c \lambda_{j}\right)$, where c is an absolute constant
- The entries of $\Phi_{i}, i \in[n]$, are independent and zero-mean with $\mathbb{E}\left[\Phi_{i}(u, v)^{2}\right]=1 / m, \Phi_{i}(u, v) \sim \operatorname{subG}\left(c^{\prime} / m\right)$, and
$\mathbb{E}\left[\Phi_{i}(u, v)^{4}\right]=c^{\prime \prime} / m^{2}$, where c^{\prime} and $c^{\prime \prime}$ are absolute constants

Sample complexity of support recovery

- Assumptions
- The entries of $X_{i}, i \in[n]$, are independent and zero-mean with $\mathbb{E}\left[X_{i j}^{2}\right]=\lambda_{j}$ for $\lambda \in S_{k, d}$ and $X_{i j} \sim \operatorname{subG}\left(c \lambda_{j}\right)$, where c is an absolute constant
- The entries of $\Phi_{i}, i \in[n]$, are independent and zero-mean with $\mathbb{E}\left[\Phi_{i}(u, v)^{2}\right]=1 / m, \Phi_{i}(u, v) \sim \operatorname{subG}\left(c^{\prime} / m\right)$, and
$\mathbb{E}\left[\Phi_{i}(u, v)^{4}\right]=c^{\prime \prime} / m^{2}$, where c^{\prime} and $c^{\prime \prime}$ are absolute constants
■ For $m<k / 2$ and $k<d-1$, the sample complexity of support recovery under the asuumptions above is

$$
n^{*}(m, k, d)=\frac{k^{2}}{m^{2}} \log (k(d-k)) .
$$

Previous work

■ Work in the multiple sample setting has mostly focused on the $m>k$ case

[^0]
Previous work

■ Work in the multiple sample setting has mostly focused on the $m>k$ case

- Recent work ${ }^{1}$ showed possibity of operating in $m<k$ regime when multiple samples available, however sample complxity not fully characterized

[^1]
Previous work

■ Work in the multiple sample setting has mostly focused on the $m>k$ case

- Recent work ${ }^{1}$ showed possibity of operating in $m<k$ regime when multiple samples available, however sample complxity not fully characterized
- Also connections to literature on covariance estimation ${ }^{2,3}$

[^2]
The estimator

■ Based on estimating variance along each coordinate

The estimator

■ Based on estimating variance along each coordinate

- Compute for all $i \in[d]$

$$
\tilde{\lambda}_{i}=\frac{1}{n} \sum_{j=1}^{n}\left(\Phi_{j i}^{\top} Y_{j}\right)^{2},
$$

where $\Phi_{j i}$ is the i th column of Φ_{j}

The estimator

■ Based on estimating variance along each coordinate

- Compute for all $i \in[d]$

$$
\tilde{\lambda}_{i}=\frac{1}{n} \sum_{j=1}^{n}\left(\Phi_{j i}^{\top} Y_{j}\right)^{2},
$$

where $\Phi_{j i}$ is the i th column of Φ_{j}

- Sort the entries of $\tilde{\lambda}: \tilde{\lambda}_{(1)} \geq \cdots \geq \tilde{\lambda}_{(d)}$

Output $\tilde{S}=\{(1), \ldots,(k)\}$

Performance of the estimator

- Hard to analyze \tilde{S}, we analyze the folowing threshold-based estimator:

$$
\hat{S}=\operatorname{supp}\left(\mathbb{1}_{\{\tilde{\lambda}>\tau\}}\right)
$$

since $\mathrm{P}(\tilde{S} \neq S) \leq \mathrm{P}(\hat{S} \neq S)$

Performance of the estimator

- Hard to analyze \tilde{S}, we analyze the folowing threshold-based estimator:

$$
\hat{S}=\operatorname{supp}\left(\mathbb{1}_{\{\tilde{\lambda}>\tau\}}\right)
$$

since $\mathrm{P}(\tilde{S} \neq S) \leq \mathrm{P}(\hat{S} \neq S)$
■ Here τ is an appropriately chosen threshold (and can depend on S)

Performance of the estimator

- Hard to analyze \tilde{S}, we analyze the folowing threshold-based estimator:

$$
\hat{S}=\operatorname{supp}\left(\mathbb{1}_{\{\tilde{\lambda}>\tau\}}\right)
$$

since $\mathrm{P}(\tilde{S} \neq S) \leq \mathrm{P}(\hat{S} \neq S)$

- Here τ is an appropriately chosen threshold (and can depend on S)

■ Probability of error

$$
P_{e} \stackrel{\text { def }}{=} \mathrm{P}(\hat{S} \neq S) \leq \sum_{i \in S} \mathrm{P}(\tilde{\lambda}<\tau)+\sum_{i \in S^{c}} \mathrm{P}(\tilde{\lambda} \geq \tau)
$$

Analysis based on tail bounds for $\tilde{\lambda}$ based on subgaussian/subexponential concentration inequalities

Performance of the estimator

- Key step in the analysis: P_{e} can be made small if the following separation condition holds for all $\left(i, i^{\prime}\right) \in S \times S^{c}$

$$
\mu_{i}-\nu_{i} \geq \mu_{i^{\prime}}+\nu_{i^{\prime}}
$$

where
$\mu_{i}, \mu_{i^{\prime}}$: mean of the estimator conditioned on Φ_{1}^{n}
$\nu_{i}, \nu_{i^{\prime}}$: deviation terms arising from concentration bounds

Performance of the estimator

- Key step in the analysis: P_{e} can be made small if the following separation condition holds for all $\left(i, i^{\prime}\right) \in S \times S^{c}$

$$
\mu_{i}-\nu_{i} \geq \mu_{i^{\prime}}+\nu_{i^{\prime}}
$$

where
$\mu_{i}, \mu_{i^{\prime}}$: mean of the estimator conditioned on Φ_{1}^{n}
$\nu_{i}, \nu_{i^{\prime}}$: deviation terms arising from concentration bounds
■ Condition fails to hold for $n=1$, recovery requires $n>1$ when $m<k$

Phase transition

Figure 1: Phase transition of the closed-form estimator.

Lower bound

■ Construct a set of $k(d-k)$ supports that are difficult to distinguish and use Fano's method

Lower bound

■ Construct a set of $k(d-k)$ supports that are difficult to distinguish and use Fano's method

■ Construction: Start with $S_{0}=\{1, \ldots, k\}$, create a set of supports G by removing $i \in\{1, \ldots, k\}$ and adding $j \in\{k+1, \ldots, d\}$

Lower bound

■ Construct a set of $k(d-k)$ supports that are difficult to distinguish and use Fano's method

- Construction: Start with $S_{0}=\{1, \ldots, k\}$, create a set of supports G by removing $i \in\{1, \ldots, k\}$ and adding $j \in\{k+1, \ldots, d\}$

■ Let U be uniformly distributed over G. By Fano's inequality

$$
\begin{aligned}
\mathrm{P}(\hat{S} \neq U) & \geq 1-\frac{I\left(Y_{1}^{n} ; U\right)+1}{\log (k(d-k))} \\
& \geq 1-\frac{\max _{S \in G} D\left(\mathrm{P}_{Y^{n} \mid S} \| \mathrm{P}_{Y^{n} \mid S_{0}}\right)+1}{\log (k(d-k))}
\end{aligned}
$$

Lower bound

- For fixed Φ_{1}^{n}, the divergence term depends on the eigenvalues $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ of $\Phi_{S} \Phi_{S}^{\top}$ and $\Phi_{S_{0}} \Phi_{S_{0}}^{\top}$

$$
D\left(\mathrm{P}_{Y^{n} \mid S, \Phi^{n}} \| \mathrm{P}_{Y^{n} \mid S_{0}, \Phi^{n}}\right) \leq \frac{n}{2} \sum_{i=1}^{m} \frac{\left(a_{i}-b_{i}\right)^{2}}{a_{i} b_{i}}
$$

Lower bound

- For fixed Φ_{1}^{n}, the divergence term depends on the eigenvalues $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ of $\Phi_{S} \Phi_{S}^{\top}$ and $\Phi_{S_{0}} \Phi_{S_{0}}^{\top}$

$$
D\left(\mathrm{P}_{Y^{n} \mid S, \Phi^{n}} \| \mathrm{P}_{Y^{n} \mid S_{0}, \Phi^{n}}\right) \leq \frac{n}{2} \sum_{i=1}^{m} \frac{\left(a_{i}-b_{i}\right)^{2}}{a_{i} b_{i}}
$$

■ Using results on the spectra of Gaussian random matrices and a few other tools, it can be shown that

$$
D\left(\mathrm{P}_{Y^{n} \mid S} \| \mathrm{P}_{Y^{n} \mid S_{0}}\right) \leq \frac{c n m^{2}}{k^{2}(1-m / k)^{4}}
$$

This gives the required scaling of n.

Summary and extensions

■ Multiple samples make support recovery possible with very few measurements per sample $(m<k)$

Summary and extensions

■ Multiple samples make support recovery possible with very few measurements per sample ($m<k$)

- Can look at more general settings with nonbinary variance and changing support

Summary and extensions

■ Multiple samples make support recovery possible with very few measurements per sample ($m<k$)

- Can look at more general settings with nonbinary variance and changing support

■ Current estimator requires knowledge of an upper bound on k

Summary and extensions

- Multiple samples make support recovery possible with very few measurements per sample ($m<k$)

■ Can look at more general settings with nonbinary variance and changing support

- Current estimator requires knowledge of an upper bound on k
- Can first try to estimate k using observations, and then use our estimator

Summary and extensions

- Multiple samples make support recovery possible with very few measurements per sample ($m<k$)

■ Can look at more general settings with nonbinary variance and changing support

■ Current estimator requires knowledge of an upper bound on k

- Can first try to estimate k using observations, and then use our estimator
- Other estimators with similar sample complexity

[^0]: ${ }^{1}$ Piya Pal and P. P. Vaidyanathan. "Pushing the Limits of Sparse Support Recovery Using Correlation Information". In: IEEE Trans. on Sig. Proc. 63.3 (2015), pp. 711-726.
 ${ }^{2}$ M. Azizyan, A. Krishnamurthy, and A. Singh. "Extreme Compressive Sampling for Covariance Estimation". In: 64.12 (Dec. 2018), pp. 7613-7635.
 ${ }^{3}$ T. Tony Cai and Anru Zhang. "ROP: Matrix recovery via rank-one projections". In: The Annal of Statistics 43.1 (2015), pp. 102-138.

[^1]: ${ }^{1}$ Piya Pal and P. P. Vaidyanathan. "Pushing the Limits of Sparse Support Recovery Using Correlation Information". In: IEEE Trans. on Sig. Proc. 63.3 (2015), pp. 711-726.
 ${ }^{2}$ M. Azizyan, A. Krishnamurthy, and A. Singh. "Extreme Compressive Sampling for Covariance Estimation". In: 64.12 (Dec. 2018), pp. 7613-7635.
 ${ }^{3}$ T. Tony Cai and Anru Zhang. "ROP: Matrix recovery via rank-one projections". In: The Annal of Statistics 43.1 (2015), pp. 102-138.

[^2]: ${ }^{1}$ Piya Pal and P. P. Vaidyanathan. "Pushing the Limits of Sparse Support Recovery Using Correlation Information". In: IEEE Trans. on Sig. Proc. 63.3 (2015), pp. 711-726.
 ${ }^{2}$ M. Azizyan, A. Krishnamurthy, and A. Singh. "Extreme Compressive Sampling for Covariance Estimation". In: 64.12 (Dec. 2018), pp. 7613-7635.
 ${ }^{3}$ T. Tony Cai and Anru Zhang. "ROP: Matrix recovery via rank-one projections". In: The Annal of Statistics 43.1 (2015), pp. 102-138.

