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Support recovery from multiple samples

Samples X1, . . . , Xn from Rd with a common support S of size k

X1 X2 X3 Xn

· · ·
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Observe low dimensional projections of each sample

= +

Yi Φi ∈ Rm×d Xi Wi
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A generative model for the data

Define Sk,d = {u ∈ {0, 1}d : |supp(u)| = k}

A generative model for the data

Xi
iid∼ N (0,Kλ), i ∈ [n],

where λ ∈ Sk,d and Kλ = diag(λ)
Note that supp(Xi) = supp(λ) def= S, ∀ i ∈ [n] a.s.

A single sample is sufficient to recover S if m = O(k log(d− k))

What happens when m < k? Can we still recover the support if we
have access to multiple samples?
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Sample complexity of support recovery

Assumptions

The entries of Xi, i ∈ [n], are independent and zero-mean with
E
[
X2

ij

]
= λj for λ ∈ Sk,d and Xij ∼ subG(cλj), where c is an

absolute constant

The entries of Φi, i ∈ [n], are independent and zero-mean with
E
[
Φi(u, v)2] = 1/m, Φi(u, v) ∼ subG(c′/m), and

E
[
Φi(u, v)4] = c′′/m2, where c′ and c′′ are absolute constants

For m < k/2 and k < d− 1, the sample complexity of support
recovery under the asuumptions above is

n∗(m, k, d) = k2

m2 log(k(d− k)).
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Previous work

Work in the multiple sample setting has mostly focused on the
m > k case

Recent work1 showed possibity of operating in m < k regime when
multiple samples available, however sample complxity not fully
characterized

Also connections to literature on covariance estimation2,3

1Piya Pal and P. P. Vaidyanathan. “Pushing the Limits of Sparse Support
Recovery Using Correlation Information”. In: IEEE Trans. on Sig. Proc. 63.3
(2015), pp. 711–726.

2M. Azizyan, A. Krishnamurthy, and A. Singh. “Extreme Compressive Sampling
for Covariance Estimation”. In: 64.12 (Dec. 2018), pp. 7613–7635.

3T. Tony Cai and Anru Zhang. “ROP: Matrix recovery via rank-one
projections”. In: The Annal of Statistics 43.1 (2015), pp. 102–138.
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The estimator

Based on estimating variance along each coordinate

Compute for all i ∈ [d]

λ̃i = 1
n

n∑
j=1

(Φ>
jiYj)2,

where Φji is the ith column of Φj

Sort the entries of λ̃: λ̃(1) ≥ · · · ≥ λ̃(d)

Output S̃ = {(1), . . . , (k)}
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Performance of the estimator

Hard to analyze S̃, we analyze the folowing threshold-based
estimator:

Ŝ = supp
(
1{λ̃>τ}

)
,

since P(S̃ 6= S) ≤ P(Ŝ 6= S)

Here τ is an appropriately chosen threshold (and can depend on S)

Probability of error

Pe
def= P(Ŝ 6= S) ≤

∑
i∈S

P(λ̃ < τ) +
∑
i∈Sc

P(λ̃ ≥ τ)

Analysis based on tail bounds for λ̃ based on
subgaussian/subexponential concentration inequalities
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Performance of the estimator

Key step in the analysis: Pe can be made small if the following
separation condition holds for all (i, i′) ∈ S × Sc

µi − νi ≥ µi′ + νi′

where
µi, µi′ : mean of the estimator conditioned on Φn

1
νi, νi′ : deviation terms arising from concentration bounds

Condition fails to hold for n = 1, recovery requires n > 1 when
m < k
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Phase transition
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(a) Gaussian prior
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(b) Rademacher prior

Figure 1: Phase transition of the closed-form estimator.
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Lower bound

Construct a set of k(d− k) supports that are difficult to
distinguish and use Fano’s method

Construction: Start with S0 = {1, . . . , k}, create a set of supports
G by removing i ∈ {1, . . . , k} and adding j ∈ {k + 1, . . . , d}

Let U be uniformly distributed over G. By Fano’s inequality

P(Ŝ 6= U) ≥ 1− I(Y n
1 ;U) + 1

log(k(d− k))

≥ 1−
maxS∈GD(PY n|S‖PY n|S0) + 1

log(k(d− k))
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Lower bound

For fixed Φn
1 , the divergence term depends on the eigenvalues {ai}

and {bi} of ΦSΦ>S and ΦS0Φ>S0

D
(
PY n|S,Φn‖PY n|S0,Φn

)
≤ n

2

m∑
i=1

(ai − bi)2

aibi

Using results on the spectra of Gaussian random matrices and a
few other tools, it can be shown that

D
(
PY n|S‖PY n|S0

)
≤ cnm2

k2(1−m/k)4

This gives the required scaling of n.
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Summary and extensions

Multiple samples make support recovery possible with very few
measurements per sample (m < k)

Can look at more general settings with nonbinary variance and
changing support

Current estimator requires knowledge of an upper bound on k

Can first try to estimate k using observations, and then use our
estimator

Other estimators with similar sample complexity
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