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Estimation problem

m Set up: We have a class P of distributions. For example,
P ={N(0,1):0 € R}.

We observe samples Xi,..., X, € X drawn i.i.d. from some P € P.
We want to estimate some parameter § € © that depends on the true
distribution P.

We design an estimator 0 : X" — © of § based on the observations:

0=0(X,...,X,)



m To assess the quality of a given estimator, we define the risk
associated with an estimator.

m We first define a loss function £: © X © — Ry
m The risk of 0 is then defined as the expected loss, i.e.,

R(9,0) = Ep £(6,0)

m Example: X ~ N (6,1), estimate 6 from a single observation of X.

(a) Let (X) = X. Then, the risk function under squared loss is

R(6,0) = E( — X)? = var(X) = 1.



(b) For A(X) = 2the risk function under squared loss is

R(0,0) =E(0 —2)® = (6 — 2)%.

m Comparing two estimators
m If R(0,01) > R(6,6,), V6 € ©, then f, is the better estimator
m In all other cases, we need to quantify the estimators by a number to
compare them



m Two ways to do this:

m Minimax: find the maximum risk  sup R(6,9), or
0cO

m Bayes: find the average risk EorR(0,0)

m Find the estimator that minimizes the Maximum risk /Bayes risk.
Such an estimator is called the Minimax estimator/Bayes estimator 6*

m In the minimax case, the risk of 0* is called the minimax risk, denoted
R(©):

Rn(©) = inf sup Epl(6, )
0 6co
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Computing the minimax risk

m Computing R,(©) directly can be difficult, the usual technique is to
bound it from above and below

m Upper bound: The maximum risk of an arbitrary estimator will give
an upper bound on R,(©), since

Rn(©) = inf sup Epl(6, §) < sup Epl(6, 0)
0 6€© 0cO

m Lower bound: We discuss two techniques: Le Cam and Fano
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m Example: X ~ N(0,02) = P, 0% known, estimate  from n i.i.d.
observations Xi,..., X,
Minimax risk under squared error loss is

Rn(©) = inf sup Ep(6 — 6)2.
0 0co

Upper bound: Pick any estimator. Say A(X1,...,X,) =+ 30, X..

n

Then,
R.(©) < p(6 — = Z Xi)?
= sup var(— Xi
ee(g) (’7 ; )
o2



m General techniques for finding lower bounds on R,(©):

m Le Cam’s method
m Fano’'s method



Le Cam’s method

m Design a test using the estimator.
Consider the binary hypothesis testing problem with

Ho X ~ Pgo
Hi: X ~ Py,
where 6,0, € O. .
Given an estimator 6 : X — ©, define the test T : X — {0, 1} with

T(x) = {0’ if (100 — 6(x)l2 < 161 — 0(x)|l2,

1, else.
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m To get a lower bound on R,(©):

m Find probability of error P, for test T in terms of max risk of §
m Lower bound P, by the probabilitonf error P} of the best test
m Get a lower bound on max risk of

m Find P, for test T

P = 2Pu(T(X) #0) + P (T(X) £ 1)
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Now,

Pos(T(X) # 0) = Poy (10 — 0(X)ll2 = 162 — B(X)]|2)

A o — 6112
< Py — D)o = 1% A1l
B, 0 — (X))

- 160 — 613

Similarly,
Ep, [161 — 6(X)|13

Pu(T(X) # 1) < 4=




Thus,

4 1 A
P*<P — E 0 X 2 it 1) 0. — (X 2)
=60 — 1 H2< Pugllfo = B(X) 15 + S Ee,, (161 — (X3

4
<—"  _ max Ep |0 -0 2
< 60— 013 n3 Erelld = 00011

4

—mmaXE%H@ 0(X)|3
— maxEp,||0 — O(X)|3 > 1\90—91”%,3*
beo o 2= 4 e
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Lower bound on P;

m Consider the binary hypothesis testing problem:
Random variable X taking values in X
Null hypothesis: Ho : X ~ P
Alternative hypothesis: H; : X ~ Q
Acceptance region A C X with

A= {x € X : declare Ho}

m Probability of error

_!

Pe
2

P(A) + %Q(A)
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1 1
— 5~ E,E\nég)é(P(A) — Q(A))
1
=51-1P=Qlmv)
> % (1 _ D;;Z!?) (Pinsker's inequality)

Thus, we have

o0l ;. [oPlra)

A 2
_ >
gqeaé(EPGHQ 0(X)lz = 8 8loge

Note that there is no dependence on the dimension of the parameter space
©
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Fano's method

m As before, we design a test using the estimator.
Consider the m-ary hypothesis testing problem with

where 01, ...,0, are chosen such that

min [|0; — 0j]l2 = a.
i

Given an estimator § : X — ©, consider the following test:

T(x) = arg min ||9(x) —0i|l2
1<i<m
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Now bound the P, for this test:
Po,(T(X) # 1) = Po,(i # argjmin 16(X) — 61ll2)
< Py (10(X) ~ 012 > 3)
< %Epgl_ué(X) —0;3, 1<i<m.
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™, Ep, |10 ) 0ill3

724

4 2
?geagEPQHO(X) — 0|12

\ AN

IN

Lower bound on P;:

1 m
P; = min — E P(T(X
e = min 2. (

L, UMx) +1)
- log m

(m.a.x D('DGI‘”'DGJ‘) + 1)
>1-— 1 .

log m
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Thus,

N (6% I
E X) — 0|2 > — J
maxE, |0(X) 013 >

2 ( (mE‘.XD(PGf|’P0j)+1))
1—

log m

m Bound tighter for larger m. Find maximum number of points that can
be packed in © such that they are separated by at least «.
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Connections with Bayes risk

m Recall: Bayes risk
R(m) = infEg..R(6,0)
0

For any prior 7
EorR(0,0) = / R(0,0)rd0
< / sup R(0,0)rdo
0

< sup R(6,0)
0



Minimizing over all estimators,

inf By R(A,0) < infsup R(A,0) = R(O).
0 0 0

m That is, the Bayes risk of any prior gives a lower bound on the
minimax risk.
Maximizing over all priors gives a tighter bound:

Ra(©) > supinf Eg.R(6,0).
™ 0
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