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Inference from data with missing values

Missing data occur frequently in practice

How to design good estimators/tests in the presence of missing
data?

Commonly used fix

m Discard samples with missing values—can lead to loss of large
amount of data

m Imputation—usually ad hoc

m This presentation: Two approaches to do SPCA using incomplete
data, guarantees
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Approximating SPCA from incomplete data!

m Data matrix X € R?*"—n samples in d dimensions

m PCA: find solution to the the following variance maximization
problem

V= argmax TrV'XX'V
VeRdxk VTV=I

m SPCA: additional sparsity constraint on columns of V

Sk = arg max Tr VXXV
VERIXk VTV=L||V,|lo<r

! Abhisek Kundu, Petros Drineas, and Malik Magdon-Ismail. “Approximating
Sparse PCA from Incomplete Data”. In: Advances in Newral Information
Processing Systems. 2015, pp. 388-396.
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Approximating SPCA from incomplete data

m Missing data case
m Only a sparse sampling of entries of X available—use it to construct

the “sketch” X
m Solve SPCA using the sketch—call the output S

» How does S, perform as an approximation to Sj?

m Quality of approximation measured in terms of the objective
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Main result—I

Let Sy and Sy, be solutions to the Sparse PCA problem with full data
and with sketched data, respectively. Then,

Tr(SEXXTS;) > Tr(S) XX 'Sy) — 2k XX " — XX T,

m Doing SPCA using X is good if XX closely approximates XX T

m Will see: |XXT — XXT||,, small if larger data entries sampled
with higher probability



Forming the sketch X

m Thresholding-based scheme

Xij _ Xij7 if |XU‘ > 0
0, else

m ({1,03) element sampling: Sample index (i, ) w.p. p;j

1
X, — IT.injv W.p. Dij
0, w.p. 1 —pjj

m Note that EX” = p”% + (1 — p”)o = XU
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(¢4, 05) sampling based sketch

m Choose p;; as follows (a € (0,1))

2

X5 X
pij = @ +(1-a)
Y IX X%

m Biases the sampling scheme towards larger elements

m Reasonable way to model sampling in some cases
Recommendation systems: users more likely to rate items they
like/dislike a lot (large positive/large negative)



More details: thresholding scheme

Let X = X + A. This gives ||A||% = DX, <s X?j

2
X%

X2 be the stable rank of X
op

Let

el

Then

HXXT - XXTHOP = [XA+ ATXT + ATAHOP
< 2/ X[lopl| Allop + 1115,

Choose § so that ||Alr < ﬁHXHF

Then, previous theorem gives

Tr(Sy XX 'Sy) > Tr(Sp XX TSy) — 2ke(1+€)[ X2,



Main result—II

m Sample complexity for (¢1,¢2) scheme

Sample s entries from X € R4*™ to form the sparse sketch X using
the (£1, ;) scheme. Let Sy and S, be solutions to the Sparse PCA
problem using X and X, respectively. Then, if the number of
samples satisfies

d—i—n)
)

> 22 2(p? + —)1
s > 2k (p +3k)0g(

with p? = # max(d,n) f(a, X), we have that
Tr(Sy XX 'Sy) > Tr(S; XXTSy) — 2ke(1+€)[ X2,

w.p. at least 1 — 9.



Sparse PCA with Missing Observations?

m Samples X, ..., X, in R? with mean zeros and covariance ¥

m Goal is to estimate the first principal component in the high
dimensional (d > n) and missing data regime

m Covariance matrix of the data represented as
Y= 0’19191r + O'QF,

where 67 is the first principal component,
01,02 ZOandFEO

?Karim Lounici. “Sparse Principal Component Analysis with Missing
Observations”. In: High Dimensional Probability VI. ed. by Christian Houdré et al.
Basel: Springer Basel, 2013, pp. 327-356.
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Missingness model

m For each sample X;, we observe its j* entry Xj, independently of
other entries, w.p. ¢

m Let Yq,...,Y, be the observations where
Yij = 04 Xij
and 0;; d Ber(9)

m In practice, § can be approximated using the fraction of observed
entries per sample



Estimation procedure

m Recovering the first principal component: Let 3, denote the
sample covariance matrix

m Sparsity level known

f, = arg max GTZnG
6€Se: [|6]|o<s

m Sparsity level unknown

0) = arg max0'%,0 — \|6]l
ISR

12 /16



Estimation procedure

m Missing data case

= Sample covariance Y9 = %YYT formed using incomplete samples is
biased

m Can apply the following correction to get an unbiased estimate of 3

~ 1
R S R s
Yn= 52 E (5 52 > diag(39)
m Final estimator

0, = arg max0' ¥,0 — \|6]|o
fesd
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Guarantees

m For Xq,...,X,, subgaussian and Y1,...,Y,, defined as before, let

o?  log(ed)

A= 1
g1 — 02 52n

Then the estimate él satisfies

A A _olog(ed)
16:07 — 0067 3 < el 50

g1
01—02

w.p. at least 1 — é, where & =

m Bound increases as 01 — 09 decreases—problem harder when
separation between first and second singular values decreases
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Remarks

Choice of A\ depends on (unknowP) singular values of X; a choice
of X\ based on singular values of ¥, is also given

For fully observed case, bound shows that roughly ||6]|olog(d)
samples suffice

m For missing data case, additional 5% penalty

m The 62 penalty is shown to be tight in the lower bound result
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