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Problem setup

m Model: Observations {y;}2 ; are generated from the following
linear model:
yi = Py +wi, i € [L],

where ® € R™*N (m < N), x; unknown, random taking values in
RN and w; ~ N(0,021).

m Assumptions:
m supp(x;) = T for some T' C [N] with |T| =k, Vi € [L]

| | E[xtyixt’j] = 0, t e [L], Z,j eT

V]
V)



Problem Setup

m We impose the following prior on x;
2
p(xi;y —
' H V2 ’YJ ( 273')

ie., z; "L N(0,T) where T = diag(y)

m Goal: Recover the common support 7" from {y;}%,



m Note:
m supp(x;) =supp(y) =T (since v, =0< z;; =0 as.)

m oy ~N(0,8Td" + o21)

EeRme

m Equivalent problem: Recover I' from an estimate of X
m We work with the sample covariance matrix by

m Express S as
X=X+ N,

where N: Noise/Error matrix.



m Equivalently (for o2 = 0),
=00’ + N

vectorize

—

r=(P0P)v+n
—_————
AeRm?xN

(® denotes the Khatri-Rao product)

m We will find the Maximum-Likelihood estimate of ~.
For that, we first derive the noise statistics.



Noise Statistics

m Mean

L
1
EN = - Ey T _»=o,
Li::l ylyz



m Covariance

cov(N) = cov ( Z yzyl )

- (E0E-3)

(sum of L i.i.d. random matrices)



m Represent y as
y=Cxz,

where z ~ N(0,1) and ¥ = CC'".
For 0% = 0, we can take C = oI

cov(vec(N)) = lcov(vec(C’ZZTC'T))

L
1
= Zcov((C ® C)vec(zz"))
= %(C ® C)Cov(vec(zzT))(C & C)T
- %(CI) ® @)(F% ® F%) cov(vec(zzT))(F% ® F%)(CI) @)’
—
BeRN2ZxN2

m Last step: use (A® B)(C® D)= AB® CD



Example: N=3

m Let 2 = [21, 29, 23] T with 2; ~ NV(0,1). Then,

Z% Z1292 Z1%3
T _ 2
ZZ = |Z1%k2 Z5 Z9%3

Z123 Z92Z3 Z%

vectorize




m The covariance matrix B of vec(zz) will be of size 9 x 9 with
B;j€{0,1,2}, 1 <4,j <3,

m Lor e.g.,

B]_71 = COV(Z%’Z%) = Ezil _ (]EZ%)2 — 3 . 1 _ 2
By = cov(zi, z120) = Bz 2y — B22Ez129 = 0

By 4 = cov(z122, 2122) = Ez%z% —Ez20Fz120 = 1
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m We now have the following model

r=Avy+n,

where



Observations

m The noise term vanishes as L — oo

m The noise covariance depends on the parameter to be estimated

m(m+1)
2

B 7, P © ¢ and n have redundant entries — restrict to the
distinct entries



New model, Gaussian approximation

m(m+1)

m Pre-multiply (1) by P € R™ 2 xm® formed using a subset of the
rows of I,,2, that picks the relevant entries. Thus,

rp = Apy+np,

where rp := Pr, Ap := PA, and np := Pn.

m Further, we approximate the distribution of np by N (0, Wp),
where Wp = PWPT

m Thus, rp ~ N(Apy, Wp).



ML estimation of ~

m Denote the ML estimate of v by vz

YmL = arg max p(rp;7y),

=0

where

1

(2)

p(T'P;’Y) = m(m+1) exp (
(2) Wpl2

2

—(rp— Apy) W5 (rp — ApV)) .



m Simplifying (2), we get

Yoz = arg min log|Wp| + (rp — Apy) " Wpl(rp — Apy).
e

m To solve (3) (recall Wp depends on v):
m Initialize Wp
m Solve
arg min (rp — Apy) ' Wp'(rp = 4,7)
vz

m Recompute Wp and iterate



Non-negative quadratic program

mini;ngize (rp — Apy)Wpl(rp — Apy) T
>

Solution (entry-wise update equation for ):

o (i /B +4QTD);@ D),
KR 2AQ70), |

where b = —ALW5lrp, Q = ALWp Ap,

Q5 = Qij, 1 Qi >0, - JQy, it Qi <0,
0, otherwise, ij = .
0, otherwise.



Support recovery performance

N =52, m =17,L = 30; exact recovery over 200 trials
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Figure 1: Support recovery performance of the NNQP-based approach;s ;-3



Support recovery performance

N =52, m =8, L = 30; exact recovery over 200 trials
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Figure 2: Support recovery performance of the NNQP-based approach,, ;3



Support recovery performance

N =37, m =10,k = 9; exact recovery over 200 trials
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Figure 3: Support recovery performance of the NNQP-based approach, ;-3



Support recovery performance

N = 37,m = 10, k = 15; exact recovery over 200 trials
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Figure 4: Support recovery performance of the NNQP-based approach,; ;-3



Observations, Future Work

m Observations
m Exact support recovery possible for k < m with ‘small’ L

m For m < k < am for some 1 < a < %, recovery possible with ‘large
L

m Runtime of the NNQP-based algorithm does not scale with L, but
scales with m, IV

m Future Work
m Study the behavior of the Restricted Isometry Constant of the
matrix Ap

m Develop a faster algorithm for solving the maximum-likelihood
problem

N
%]

9

V)
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