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Problem setup

Model: Observations {yi}Li=1 are generated from the following
linear model:

yi = Φxi + wi, i ∈ [L],

where Φ ∈ Rm×N (m < N), xi unknown, random taking values in
RN and wi ∼ N (0, σ2I).

Assumptions:
supp(xi) = T for some T ⊂ [N ] with |T | = k, ∀i ∈ [L]

E[xt,ixt,j ] = 0, t ∈ [L], i, j ∈ T
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Problem Setup

We impose the following prior on xi

p(xi; γ) =
N∏
j=1

1√
2πγj

exp
(
−
x2
ij

2γj

)

i.e., xi
iid∼ N (0,Γ) where Γ = diag(γ)

Goal: Recover the common support T from {yi}Li=1
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Note:
supp(xi) = supp(γ) = T (since γj = 0⇔ xij = 0 a.s.)

yi ∼ N (0,ΦΓΦ> + σ2I︸ ︷︷ ︸
Σ∈Rm×m

)

Equivalent problem: Recover Γ from an estimate of Σ
We work with the sample covariance matrix Σ̂

Express Σ̂ as
Σ̂ = Σ +N,

where N : Noise/Error matrix.
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Equivalently (for σ2 = 0),

Σ̂ = ΦΓΦ> +Nyvectorize

r = (Φ� Φ)︸ ︷︷ ︸
A∈Rm2×N

γ + n

(� denotes the Khatri-Rao product)

We will find the Maximum-Likelihood estimate of γ.
For that, we first derive the noise statistics.
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Noise Statistics

Mean

EN = 1
L

L∑
i=1

Eyiy>i − Σ = 0,
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Covariance

cov(N) = cov
(

1
L

L∑
i=1

yiy
>
i − Σ

)

= cov
(

L∑
i=1

(
yiy
>
i

L
− Σ
L

))

= Lcov
(
y1y
>
1

L
− Σ
L

)
(sum of L i.i.d. random matrices)

= 1
L

cov(y1y
>
1 − Σ)

= 1
L

cov(yy>).

7 / 23



Represent y as
y = Cz,

where z ∼ N (0, I) and Σ = CC>.

For σ2 = 0, we can take C = ΦΓ
1
2

cov(vec(N)) = 1
L

cov(vec(Czz>C>))

= 1
L

cov((C ⊗ C)vec(zz>))

= 1
L

(C ⊗ C)cov(vec(zz>))(C ⊗ C)>

= 1
L

(Φ⊗ Φ)(Γ
1
2 ⊗ Γ

1
2 ) cov(vec(zz>))︸ ︷︷ ︸

B∈RN2×N2

(Γ
1
2 ⊗ Γ

1
2 )(Φ⊗ Φ)>,

Last step: use (A⊗B)(C ⊗D) = AB ⊗ CD
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Example: N=3

Let z = [z1, z2, z3]> with zi ∼ N (0, 1). Then,

zz> =

 z2
1 z1z2 z1z3

z1z2 z2
2 z2z3

z1z3 z2z3 z2
3

 vectorize−−−−−→



z2
1

z1z2
z1z3
z1z2
z2

2
z2z3
z1z3
z2z3
z2

3


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The covariance matrix B of vec(zz>) will be of size 9× 9 with
Bi,j ∈ {0, 1, 2}, 1 ≤ i, j ≤ 3.

For e.g.,

B1,1 = cov(z2
1 , z

2
1) = Ez4

1 − (Ez2
1)2 = 3− 1 = 2

B1,2 = cov(z2
1 , z1z2) = Ez3

1z2 − Ez2
1Ez1z2 = 0

B2,4 = cov(z1z2, z1z2) = Ez2
1z

2
2 − Ez1z2Ez1z2 = 1
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B = cov(vec(zz>)) =



2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 2


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We now have the following model

r = Aγ + n, (1)

where

A = (Φ� Φ),
E[n] = 0,

cov(n) = W = 1
L

(Φ⊗ Φ)(Γ
1
2 ⊗ Γ

1
2 )B(Γ

1
2 ⊗ Γ

1
2 )(Φ⊗ Φ)>.
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Observations

The noise term vanishes as L→∞

The noise covariance depends on the parameter to be estimated

r, Φ� Φ and n have redundant entries – restrict to the m(m+1)
2

distinct entries
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New model, Gaussian approximation

Pre-multiply (1) by P ∈ R
m(m+1)

2 ×m2 , formed using a subset of the
rows of Im2 , that picks the relevant entries. Thus,

rP = APγ + nP ,

where rP := Pr, AP := PA, and nP := Pn.

Further, we approximate the distribution of nP by N (0,WP ),
where WP = PWP>

Thus, rP ∼ N (APγ,WP ).
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ML estimation of γ

Denote the ML estimate of γ by γML

γML = arg max
γ≥0

p(rP ; γ), (2)

where

p(rP ; γ) = 1

(2π)
m(m+1)

4 |WP |
1
2

exp
(
−(rP −APγ)>W−1

P (rP −Apγ)
2

)
.
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Simplifying (2), we get

γML = arg min
γ≥0

log |WP |+ (rP −APγ)>W−1
P (rP −Apγ). (3)

To solve (3) (recall WP depends on γ):
Initialize WP

Solve
arg min
γ≥0

(rP −AP γ)>W−1
P (rP −Apγ)

Recompute WP and iterate
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Non-negative quadratic program

minimize
γ≥0

(rP −APγ)W−1
P (rP −Apγ)>

Solution (entry-wise update equation for γ):

γ
(i+1)
j = γ

(i)
j

−bj +
√
b2
j + 4(Q+γ(i))j(Q−γ(i))j

2(Q+γ(i))j

 ,
where b = −A>PW

−1
P rP , Q = A>PW

−1
P AP ,

Q+
ij =

{
Qij , if Qij > 0,
0, otherwise, Q−ij =

{
−Qij , if Qij < 0,
0, otherwise.
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Support recovery performance

N = 52,m = 7, L = 30; exact recovery over 200 trials
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Figure 1: Support recovery performance of the NNQP-based approach18 / 23



Support recovery performance

N = 52,m = 8, L = 30; exact recovery over 200 trials
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Figure 2: Support recovery performance of the NNQP-based approach19 / 23



Support recovery performance

N = 37,m = 10, k = 9; exact recovery over 200 trials
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Figure 3: Support recovery performance of the NNQP-based approach20 / 23



Support recovery performance

N = 37,m = 10, k = 15; exact recovery over 200 trials

0 1000 2000 3000 4000 5000 6000 7000
0.45

0.5

0.55

0.6

0.65

0.7

L

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

Figure 4: Support recovery performance of the NNQP-based approach21 / 23



Observations, Future Work

Observations
Exact support recovery possible for k < m with ‘small’ L

For m ≤ k ≤ αm for some 1 ≤ α < N
m , recovery possible with ‘large’

L

Runtime of the NNQP-based algorithm does not scale with L, but
scales with m,N

Future Work
Study the behavior of the Restricted Isometry Constant of the
matrix AP

Develop a faster algorithm for solving the maximum-likelihood
problem
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