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Ramanujan graph

Let G be a connected d−regular graph with n vertices, and let
λ0 ≥ λ1 ≥ · · · ≥ λn−1 be the eigenvalues of the adjacency matrix
G of G. Because G is connected and d−regular, its eigenvalues
satisfy d = λ0 > λ1 ≥ · · · ≥ λn−1 ≥ −d . Whenever there exists λi
with |λi | < d , define λ(G ) = max|λi |<d |λi |.

I 1 is the eigen vector corresponding to eigen value d .

I λ1(G ) ≥ 2
√
d − 1− ε

Definition
A d−regular graph G is a Ramanujan graph if λ(G ) ≤ 2

√
d − 1,

that is the second largest eigen value λ1(G ) ≤ 2
√
d − 1.

Definition
A (d1, d2)−biregular graph G is a Ramanujan graph if
λ(G ) ≤

√
d1 − 1 +

√
d2 − 1, that is the second largest singular

value λ1(G ) ≤
√
d1 − 1 +

√
d2 − 1.



Problem Statement

I Let M ∈ Rn1×n2 be a rank−r matrix and let n1 ≥ n2. Define
n = max{n1, n2} = n1. Let M = UΣV T be the SVD of M
and let σ1 ≥ σ2 ≥ · · · ≥ σr be the singular values of M.

I We observe a small number of entries of M indexed by a set
Ω ∈ [n1]× [n2]. That is, we observe Mij , ∀ (i , j) ∈ Ω. Define
the sampling operator PΩ : Rn1×n2 → Rn1×n2 as:

PΩ(M) =

{
Mij , if (i , j) ∈ Ω

0, if (i , j) /∈ Ω
(1)

Objective

The goal in universal matrix completion is to design a set Ω and a
recovery algorithm, s.t., all rank−r matrices M can be recovered
using only PΩ(M).



Connection to bipartite graph

I Define a bipartite graph associated with the sampling operator
PΩ.

I let G = (V ,E ) be a bipartite graph where
V = {1, 2, . . . , n1} ∪ {1, 2, . . . , n2} and (i , j) ∈ E iff (i , j) ∈ Ω.

I Let G ∈ Rn1×n2 be the biadjacency matrix of the bipartite
graph G with Gij = 1 iff (i , j) ∈ Ω.

I Note that, PΩ(M) = M.G , where . denotes the Hadamard
product.



Assumptions

Assumptions on G/Ω

I (G 1) Top singular vectors of G are all ones vector.

I (G 2) σ1(G ) = d and σ2(G ) ≤ C
√
d .

Incoherence Assumptions

I (A 1) ‖U i‖2
2 ≤

µ0r
n1
,∀ i and ‖V j‖2

2 ≤
µ0r
n2
,∀ i

I (A 2) ‖
∑

k∈S
n1
d U

kUkT − I‖2 ≤ δd , ∀S ⊂ [n1], |S | = d and

‖
∑

k∈S
n2
d ′V

kV kT − I‖2 ≤ δd , ∀S ⊂ [n2], |S | = d , d ′ = dn2
n1
.



Main Results

Matrix approximation
1

Theorem
Let G be a d−regular bipartite graph satisfying (G 1) and (G 2).
Let M be a rank−r matrix that satisfies assumption (A 1). Then,

‖n
d
PΩ(M)−M‖2 ≤

Cµ0r√
d
‖M‖2,

That is,

‖n
d
Pk(PΩ(M))−M‖2 ≤

Cµ0r√
d
‖M‖2.

for any k ≥ r , where Pk(A) is the best rank−k approximation of A
and can be obtained using top−k singular vectors of A.

1Srinadh Bhojanapalli and Prateek Jain, “Universal Matrix Completion,”
Proceedings of the 31 st International Conference on Machine Learning,
Beijing, China, 2014.



Nuclear norm minimization

Convex relaxation

min
X

rank(X )

subject to PΩ(X ) = PΩ(M),
(2)

converted to
min
X

‖X‖∗

subject to PΩ(X ) = PΩ(M),
(3)

where ‖X‖∗ denote the nuclear norm of X .



Results on Nuclear norm minimization

Existing result

Nuclear norm minimization technique is a popular technique for
the low-rank matrix completion problem and has been shown to
provably recover the true matrix, assuming that Ω is sampled
uniformly at random and |Ω| ≥ cnr log n.2

Universal recovery result

Theorem
Let M be an n1n2 matrix of rank r satisfying assumptions (A 1)
and (A 2) with δd ≤ 1

6 , and Ω is generated from a d−regular
graph G that satisfies the assumptions (G 1) and (G 2). Also, let
d ≥ 36C 2µ2

0r
2, i.e., |Ω| = nd ≥ 36C 2µ2

0r
2 max{n1, n2}. Then M is

the unique optimum of (3).

2E. J. Candes and T. Tao, ”The Power of Convex Relaxation: Near-Optimal
Matrix Completion,” in IEEE Transactions on Information Theory, vol. 56, no.
5, pp. 2053-2080, May 2010.



Random d−regular graph

I The second singular value of a random d−regular graph is
≤ 2
√
d − 1 + ε, for every epsilon > 0, with high probability 3.

Hence, a random d−regular graph, with high probability,
obeys (G 1) and (G 2).

Theorem
Let M be an n1n2 matrix of rank r satisfying assumptions (A 1)
and (A 2) with δd ≤ 1

6 , and Ω is generated from a random
d−regular graph G, M is the unique optimal solution of (3) when
d ≥ 36 ∗ 4µ2

0r
2, with high probabality.

3Joel. A Friedman, “proof of alon’s second eigenvalue conjecture,” In
Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pp. 720–724. ACM, 2003.



Alternative of Nuclear norm minimization

Definition
γ2(M) = minUV ∗=M ‖U‖`2→`

n1∞
‖V ‖`2→`

n2∞
, the minimum is taken

over all possible factorizations of M = UV ∗ , and the norm

‖X‖`2→`n∞ = maxi
√∑

j X
2
ij returns the largest `2 norm of a row.

Equivalently,

γ2(M) = min
UV ∗=M

max
i ,j
‖ui‖2‖vj‖2.

I γ2(M) ≤
√

rank(M)‖M‖∞
I γ2(M) ≤ ‖M‖∗



Optimization problem

min
X

γ2(X )

subject to PΩ(X ) = PΩ(M),
(4)

Theorem
4 Solving (4), ‖ 1

n2PΩ(M)−M‖2
F ≤ cγ2(M)2 η

d , where Ω is
d−regular graph and η is the second largest singular value.

4Eyal Heiman, Gideon Schechtman, and Adi Shraibman. Deterministic
algorithms for matrix completion. Random Structures Algorithms,
45(2):306–317, September 2014.



Continue ..

Theorem
5 Solving (4), ‖ 1

n1n2
PΩ(M)−M‖2

F ≤ cγ2(M)2 η√
d1d2

, where Ω is

(d1, d2)−biregular graph and η is the second largest singular value.

Noisy matrix completion

min
X

γ2(X )

subject to
1

|Ω|
∑

(i ,j)∈Ω

((PΩ(X ))ij −Mij) ≤ δ2,
(5)

5Gerandy Brito, Ioana Dumitriu and Kameron Decker Harris, “ Spectral gap
in random bipartite biregular graphs and applications’” arXiv:1804.07808



Theorem
Suppose Zij = Mij + εij with

1

|Ω|
∑

(i ,j)∈Ω

ε2
ij ≤ δ2.

Then, solving (5), ‖ 1
n1n2

PΩ(M)−M‖2
F ≤ cγ2(M)2 η√

d1d2
+ 4δ2,

where Ω is (d1, d2)−biregular graph and η is the second largest
singular value.
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