Application of Ramanujan graph in matrix completion problem

Pradip Sasmal

IISc Bangalore

25/05/2019

Ramanujan graph

Let \mathcal{G} be a connected d-regular graph with n vertices, and let $\lambda_0 \geq \lambda_1 \geq \cdots \geq \lambda_{n-1}$ be the eigenvalues of the adjacency matrix G of \mathcal{G} . Because \mathcal{G} is connected and d-regular, its eigenvalues satisfy $d = \lambda_0 > \lambda_1 \geq \cdots \geq \lambda_{n-1} \geq -d$. Whenever there exists λ_i with $|\lambda_i| < d$, define $\lambda(G) = \max_{|\lambda_i| < d} |\lambda_i|$.

▶ 1 is the eigen vector corresponding to eigen value *d*.

•
$$\lambda_1(G) \geq 2\sqrt{d-1} - \epsilon$$

Definition

A *d*-regular graph \mathcal{G} is a Ramanujan graph if $\lambda(G) \leq 2\sqrt{d-1}$, that is the second largest eigen value $\lambda_1(G) \leq 2\sqrt{d-1}$.

Definition

A (d_1, d_2) -biregular graph \mathcal{G} is a Ramanujan graph if $\lambda(\mathcal{G}) \leq \sqrt{d_1 - 1} + \sqrt{d_2 - 1}$, that is the second largest singular value $\lambda_1(\mathcal{G}) \leq \sqrt{d_1 - 1} + \sqrt{d_2 - 1}$.

Problem Statement

- ► Let $M \in \mathbb{R}^{n_1 \times n_2}$ be a rank-*r* matrix and let $n_1 \ge n_2$. Define $n = \max\{n_1, n_2\} = n_1$. Let $M = U\Sigma V^T$ be the SVD of *M* and let $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$ be the singular values of *M*.
- We observe a small number of entries of *M* indexed by a set Ω ∈ [n₁] × [n₂]. That is, we observe M_{ij}, ∀ (i, j) ∈ Ω. Define the sampling operator P_Ω : ℝ^{n₁×n₂} → ℝ^{n₁×n₂} as:

$$P_{\Omega}(M) = \begin{cases} M_{ij}, & \text{if}(i,j) \in \Omega\\ 0, & \text{if}(i,j) \notin \Omega \end{cases}$$
(1)

Objective

The goal in universal matrix completion is to design a set Ω and a recovery algorithm, s.t., all rank-r matrices M can be recovered using only $P_{\Omega}(M)$.

Connection to bipartite graph

- Define a bipartite graph associated with the sampling operator P_{Ω} .
- let $\mathcal{G} = (V, E)$ be a bipartite graph where $V = \{1, 2, \dots, n_1\} \cup \{1, 2, \dots, n_2\}$ and $(i, j) \in E$ iff $(i, j) \in \Omega$.
- Let G ∈ ℝ^{n₁×n₂} be the biadjacency matrix of the bipartite graph G with G_{ij} = 1 iff (i, j) ∈ Ω.
- ▶ Note that, $P_{\Omega}(M) = M.G$, where . denotes the Hadamard product.

Assumptions

Assumptions on G/Ω

- (G 1) Top singular vectors of G are all ones vector.
- (G 2) $\sigma_1(G) = d$ and $\sigma_2(G) \leq C\sqrt{d}$.

Incoherence Assumptions

Main Results

Matrix approximation

Theorem

Let G be a d-regular bipartite graph satisfying (G 1) and (G 2). Let M be a rank-r matrix that satisfies assumption (A 1). Then,

$$\Vert rac{n}{d} P_{\Omega}(M) - M \Vert_2 \leq rac{C\mu_0 r}{\sqrt{d}} \Vert M \Vert_2,$$

That is,

$$\|\frac{n}{d}P_k(P_{\Omega}(M))-M\|_2\leq \frac{C\mu_0r}{\sqrt{d}}\|M\|_2.$$

for any $k \ge r$, where $P_k(A)$ is the best rank-k approximation of A and can be obtained using top-k singular vectors of A.

¹Srinadh Bhojanapalli and Prateek Jain, "Universal Matrix Completion," Proceedings of the 31 st International Conference on Machine Learning, Beijing, China, 2014.

Nuclear norm minimization

Convex relaxation

$$\min_{X} \operatorname{rank}(X)$$
(2)
subject to $P_{\Omega}(X) = P_{\Omega}(M),$
$$\min_{X} ||X||_{*}$$
subject to $P_{\Omega}(X) = P_{\Omega}(M),$

where $||X||_*$ denote the nuclear norm of *X*.

Results on Nuclear norm minimization

Existing result

Nuclear norm minimization technique is a popular technique for the low-rank matrix completion problem and has been shown to provably recover the true matrix, assuming that Ω is sampled uniformly at random and $|\Omega| \ge cnr \log n^2$.

Universal recovery result

Theorem

Let *M* be an n_1n_2 matrix of rank *r* satisfying assumptions (A 1) and (A 2) with $\delta_d \leq \frac{1}{6}$, and Ω is generated from a *d*-regular graph *G* that satisfies the assumptions (G 1) and (G 2). Also, let $d \geq 36C^2\mu_0^2r^2$, i.e., $|\Omega| = nd \geq 36C^2\mu_0^2r^2 \max\{n_1, n_2\}$. Then *M* is the unique optimum of (3).

²E. J. Candes and T. Tao, "The Power of Convex Relaxation: Near-Optimal Matrix Completion," in IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2053-2080, May 2010.

Random d-regular graph

The second singular value of a random *d*−regular graph is ≤ 2√*d*−1 + *ϵ*, for every *epsilon* > 0, with high probability ³. Hence, a random *d*−regular graph, with high probability, obeys (G 1) and (G 2).

Theorem

Let M be an n_1n_2 matrix of rank r satisfying assumptions (A 1) and (A 2) with $\delta_d \leq \frac{1}{6}$, and Ω is generated from a random d-regular graph \mathcal{G} , M is the unique optimal solution of (3) when $d \geq 36 * 4\mu_0^2 r^2$, with high probabality.

³Joel. A Friedman, "proof of alon's second eigenvalue conjecture," In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pp. 720–724. ACM, 2003.

Alternative of Nuclear norm minimization

Definition

 $\gamma_2(M) = \min_{UV^*=M} \|U\|_{\ell_2 \to \ell_\infty^{n_1}} \|V\|_{\ell_2 \to \ell_\infty^{n_2}}$, the minimum is taken over all possible factorizations of $M = UV^*$, and the norm $\|X\|_{\ell_2 \to \ell_\infty^n} = \max_i \sqrt{\sum_j X_{ij}^2}$ returns the largest ℓ_2 norm of a row. Equivalently,

$$\gamma_2(M) = \min_{UV^*=M} \max_{i,j} \|u_i\|_2 \|v_j\|_2.$$

 $\gamma_2(M) \le \sqrt{\operatorname{rank}(M)} \|M\|_{\infty}$ $\gamma_2(M) \le \|M\|_*$

Optimization problem

$$\begin{array}{ll} \min_{X} & \gamma_{2}(X) \\ \text{subject to} & P_{\Omega}(X) = P_{\Omega}(M), \end{array} \tag{4}$$

Theorem

⁴ Solving (4), $\|\frac{1}{n^2}P_{\Omega}(M) - M\|_F^2 \leq c\gamma_2(M)^2\frac{\eta}{d}$, where Ω is d-regular graph and η is the second largest singular value.

⁴Eyal Heiman, Gideon Schechtman, and Adi Shraibman. Deterministic algorithms for matrix completion. Random Structures Algorithms, 45(2):306–317, September 2014.

Continue ..

Theorem

⁵ Solving (4), $\|\frac{1}{n_1n_2}P_{\Omega}(M) - M\|_F^2 \leq c\gamma_2(M)^2 \frac{\eta}{\sqrt{d_1d_2}}$, where Ω is (d_1, d_2) -biregular graph and η is the second largest singular value.

Noisy matrix completion

$$\min_{X} \qquad \gamma_{2}(X)$$
subject to
$$\frac{1}{|\Omega|} \sum_{(i,j)\in\Omega} ((P_{\Omega}(X))_{ij} - M_{ij}) \leq \delta^{2},$$
(5)

⁵Gerandy Brito, Ioana Dumitriu and Kameron Decker Harris, " Spectral gap in random bipartite biregular graphs and applications" arXiv:1804.07808

Theorem Suppose $Z_{ij} = M_{ij} + \epsilon_{ij}$ with

$$rac{1}{|\Omega|}\sum_{(i,j)\in\Omega}\epsilon_{ij}^2\leq \delta^2.$$

Then, solving (5), $\|\frac{1}{n_1n_2}P_{\Omega}(M) - M\|_F^2 \leq c\gamma_2(M)^2\frac{\eta}{\sqrt{d_1d_2}} + 4\delta^2$, where Ω is (d_1, d_2) -biregular graph and η is the second largest singular value.

THANK YOU!