Application of Ramanujan graph in matrix completion problem

Pradip Sasmal

IISc Bangalore
25/05/2019

Ramanujan graph

Let \mathcal{G} be a connected d-regular graph with n vertices, and let $\lambda_{0} \geq \lambda_{1} \geq \cdots \geq \lambda_{n-1}$ be the eigenvalues of the adjacency matrix G of \mathcal{G}. Because \mathcal{G} is connected and d-regular, its eigenvalues satisfy $d=\lambda_{0}>\lambda_{1} \geq \cdots \geq \lambda_{n-1} \geq-d$. Whenever there exists λ_{i} with $\left|\lambda_{i}\right|<d$, define $\lambda(G)=\max _{\left|\lambda_{i}\right|<d}\left|\lambda_{i}\right|$.

- $\mathbf{1}$ is the eigen vector corresponding to eigen value d.
- $\lambda_{1}(G) \geq 2 \sqrt{d-1}-\epsilon$

Definition

A d-regular graph \mathcal{G} is a Ramanujan graph if $\lambda(G) \leq 2 \sqrt{d-1}$, that is the second largest eigen value $\lambda_{1}(G) \leq 2 \sqrt{d-1}$.

Definition

A $\left(d_{1}, d_{2}\right)$-biregular graph \mathcal{G} is a Ramanujan graph if
$\lambda(G) \leq \sqrt{d_{1}-1}+\sqrt{d_{2}-1}$, that is the second largest singular value $\lambda_{1}(G) \leq \sqrt{d_{1}-1}+\sqrt{d_{2}-1}$.

Problem Statement

- Let $M \in \mathbb{R}^{n_{1} \times n_{2}}$ be a rank- r matrix and let $n_{1} \geq n_{2}$. Define $n=\max \left\{n_{1}, n_{2}\right\}=n_{1}$. Let $M=U \Sigma V^{T}$ be the SVD of M and let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$ be the singular values of M.
- We observe a small number of entries of M indexed by a set $\Omega \in\left[n_{1}\right] \times\left[n_{2}\right]$. That is, we observe $M_{i j}, \forall(i, j) \in \Omega$. Define the sampling operator $P_{\Omega}: \mathbb{R}^{n_{1} \times n_{2}} \rightarrow \mathbb{R}^{n_{1} \times n_{2}}$ as:

$$
P_{\Omega}(M)= \begin{cases}M_{i j}, & \text { if }(i, j) \in \Omega \tag{1}\\ 0, & \text { if }(i, j) \notin \Omega\end{cases}
$$

Objective

The goal in universal matrix completion is to design a set Ω and a recovery algorithm, s.t., all rank-r matrices M can be recovered using only $P_{\Omega}(M)$.

Connection to bipartite graph

- Define a bipartite graph associated with the sampling operator P_{Ω}.
- let $\mathcal{G}=(V, E)$ be a bipartite graph where $V=\left\{1,2, \ldots, n_{1}\right\} \cup\left\{1,2, \ldots, n_{2}\right\}$ and $(i, j) \in E$ iff $(i, j) \in \Omega$.
- Let $G \in \mathbb{R}^{n_{1} \times n_{2}}$ be the biadjacency matrix of the bipartite graph \mathcal{G} with $G_{i j}=1 \operatorname{iff}(i, j) \in \Omega$.
- Note that, $P_{\Omega}(M)=M . G$, where . denotes the Hadamard product.

Assumptions

Assumptions on G / Ω

- (G 1) Top singular vectors of G are all ones vector.
- (G 2) $\sigma_{1}(G)=d$ and $\sigma_{2}(G) \leq C \sqrt{d}$.

Incoherence Assumptions

- (A 1) $\left\|U^{i}\right\|_{2}^{2} \leq \frac{\mu_{0} r}{n_{1}}, \forall i$ and $\left\|V^{j}\right\|_{2}^{2} \leq \frac{\mu_{0} r}{n_{2}}, \forall i$
-(A 2) $\left\|\sum_{k \in S} \frac{n_{1}}{d} U^{k} U^{k^{T}}-I\right\|_{2} \leq \delta_{d}, \forall S \subset\left[n_{1}\right],|S|=d$ and $\left\|\sum_{k \in S} \frac{n_{2}}{d^{\prime}} V^{k} V^{k^{T}}-I\right\|_{2} \leq \delta_{d}, \forall S \subset\left[n_{2}\right],|S|=d, d^{\prime}=\frac{d n_{2}}{n_{1}}$.

Main Results

Matrix approximation

1

Theorem

Let \mathcal{G} be a d-regular bipartite graph satisfying (G 1) and (G 2). Let M be a rank-r matrix that satisfies assumption (A 1). Then,

$$
\left\|\frac{n}{d} P_{\Omega}(M)-M\right\|_{2} \leq \frac{C \mu_{0} r}{\sqrt{d}}\|M\|_{2}
$$

That is,

$$
\left\|\frac{n}{d} P_{k}\left(P_{\Omega}(M)\right)-M\right\|_{2} \leq \frac{C \mu_{0} r}{\sqrt{d}}\|M\|_{2}
$$

for any $k \geq r$, where $P_{k}(A)$ is the best rank- k approximation of A and can be obtained using top-k singular vectors of A.
${ }^{1}$ Srinadh Bhojanapalli and Prateek Jain, "Universal Matrix Completion," Proceedings of the 31 st International Conference on Machine Learning, Beijing, China, 2014.

Nuclear norm minimization

Convex relaxation

$\min _{X}$	$\operatorname{rank}(X)$
subject to	$P_{\Omega}(X)=P_{\Omega}(M)$,

converted to

$$
\begin{array}{ll}
\min _{X} & \|X\|_{*} \tag{3}\\
\text { subject to } & P_{\Omega}(X)=P_{\Omega}(M),
\end{array}
$$

where $\|X\|_{*}$ denote the nuclear norm of X.

Results on Nuclear norm minimization

Existing result

Nuclear norm minimization technique is a popular technique for the low-rank matrix completion problem and has been shown to provably recover the true matrix, assuming that Ω is sampled uniformly at random and $|\Omega| \geq c n r \log n .^{2}$

Universal recovery result

Theorem

Let M be an $n_{1} n_{2}$ matrix of rank r satisfying assumptions (A 1) and (A 2) with $\delta_{d} \leq \frac{1}{6}$, and Ω is generated from a d-regular graph \mathcal{G} that satisfies the assumptions (G1) and (G2). Also, let $d \geq 36 C^{2} \mu_{0}^{2} r^{2}$, i.e., $|\Omega|=n d \geq 36 C^{2} \mu_{0}^{2} r^{2} \max \left\{n_{1}, n_{2}\right\}$. Then M is the unique optimum of (3).

[^0]
Random d-regular graph

- The second singular value of a random d-regular graph is $\leq 2 \sqrt{d-1}+\epsilon$, for every epsilon >0, with high probability ${ }^{3}$. Hence, a random d-regular graph, with high probability, obeys (G1) and (G2).

Theorem

Let M be an $n_{1} n_{2}$ matrix of rank r satisfying assumptions (A 1) and (A2) with $\delta_{d} \leq \frac{1}{6}$, and Ω is generated from a random d-regular graph \mathcal{G}, M is the unique optimal solution of (3) when $d \geq 36 * 4 \mu_{0}^{2} r^{2}$, with high probabality.
${ }^{3}$ Joel. A Friedman, "proof of alon's second eigenvalue conjecture," In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pp. 720-724. ACM, 2003.

Alternative of Nuclear norm minimization

Definition

$\gamma_{2}(M)=\min _{U V^{*}=M}\|U\|_{\ell_{2} \rightarrow \ell_{\infty}^{n_{1}}}\|V\|_{\ell_{2} \rightarrow \ell_{\infty}^{n_{2}}}$, the minimum is taken over all possible factorizations of $M=U V^{*}$, and the norm $\|X\|_{\ell_{2} \rightarrow \ell_{\infty}^{n}}=\max _{i} \sqrt{\sum_{j} X_{i j}^{2}}$ returns the largest ℓ_{2} norm of a row. Equivalently,

$$
\gamma_{2}(M)=\min _{U V^{*}=M} \max _{i, j}\left\|u_{i}\right\|_{2}\left\|v_{j}\right\|_{2}
$$

- $\gamma_{2}(M) \leq \sqrt{\operatorname{rank}(M)}\|M\|_{\infty}$
- $\gamma_{2}(M) \leq\|M\|_{*}$

Optimization problem

$$
\begin{array}{ll}
\min _{X} & \gamma_{2}(X) \tag{4}\\
\text { subject to } & P_{\Omega}(X)=P_{\Omega}(M),
\end{array}
$$

Theorem
${ }^{4}$ Solving (4), $\left\|\frac{1}{n^{2}} P_{\Omega}(M)-M\right\|_{F}^{2} \leq c \gamma_{2}(M)^{2} \frac{\eta}{d}$, where Ω is d-regular graph and η is the second largest singular value.

[^1]
Continue ..

Theorem
${ }^{5}$ Solving (4), $\left\|\frac{1}{n_{1} n_{2}} P_{\Omega}(M)-M\right\|_{F}^{2} \leq c \gamma_{2}(M)^{2} \frac{\eta}{\sqrt{d_{1} d_{2}}}$, where Ω is (d_{1}, d_{2})-biregular graph and η is the second largest singular value.

Noisy matrix completion

$$
\begin{array}{ll}
\min _{X} & \gamma_{2}(X) \\
\text { subject to } & \frac{1}{|\Omega|} \sum_{(i, j) \in \Omega}\left(\left(P_{\Omega}(X)\right)_{i j}-M_{i j}\right) \leq \delta^{2}, \tag{5}
\end{array}
$$

[^2]Theorem
Suppose $Z_{i j}=M_{i j}+\epsilon_{i j}$ with

$$
\frac{1}{|\Omega|} \sum_{(i, j) \in \Omega} \epsilon_{i j}^{2} \leq \delta^{2}
$$

Then, solving (5), $\left\|\frac{1}{n_{1} n_{2}} P_{\Omega}(M)-M\right\|_{F}^{2} \leq c \gamma_{2}(M)^{2} \frac{\eta}{\sqrt{d_{1} d_{2}}}+4 \delta^{2}$, where Ω is $\left(d_{1}, d_{2}\right)$-biregular graph and η is the second largest singular value.

THANK YOU!

[^0]: ${ }^{2}$ E. J. Candes and T. Tao, "The Power of Convex Relaxation: Near-Optimal Matrix Completion," in IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2053-2080, May 2010.

[^1]: ${ }^{4}$ Eyal Heiman, Gideon Schechtman, and Adi Shraibman. Deterministic algorithms for matrix completion. Random Structures Algorithms, 45(2):306-317, September 2014.

[^2]: ${ }^{5}$ Gerandy Brito, Ioana Dumitriu and Kameron Decker Harris, " Spectral gap in random bipartite biregular graphs and applications'" arXiv:1804.07808

