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A note on binary sensing matrices

Basics of Compressed Sensing

A vector x ∈ RM is k−sparse if it has k nonzero coordinates.
That is, ‖x‖0 := |{i | xi 6= 0}| = k < M

One of the central problems in CS is that of reconstructing an
unknown sparse vector x ∈ RM from the linear measurements
y ′ = (〈x , φ1〉, . . . , 〈x , φM〉) ∈ Rm

One can recover sparse x from its linear measurements by
solving the following optimization problem:

P0 : min
x
‖x‖0 subject to Φx = y (1)

This l0−minimization problem is computationally not
tractablea in general

aSimon Foucart and Holger Rauhut, “A Mathematical Introduction to
Compressive Sensing,” Birkhauser, Baseln, 2013.
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A note on binary sensing matrices

On the solvability of P0 problem

There have been attempts to repose or solve P0 problem via
greedy and convex relaxation methods

D.Donoho et.al.a posed an equivalent of this problem as

P1 : min
x
‖x‖1 subject to b = Φx (2)

Fast solvers are available

The algorithms OMP, STOMP, WMP, MP, ROMP fall under
greedy category. Among all, OMP is most popular algorithm

aS.S. Chen, D.L. Donoho, and M.A. Saunders, “Atomic Decomposition by
Basis Pursuit,” SIAM, 2001.
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A note on binary sensing matrices

Sufficient conditions for equivalence between P0 and P1

The general question of CS is: “when do both problems (1)
and (2) admit same solution ?”

Definition

The mutual-coherence of a given matrix Φ is the largest absolute
inner-product between different normalized columns of Φ.
Denoting the k-th column in Φ by φk , the mutual-coherence is
given by

µ(Φ) = max
1≤ i ,j≤ m, i 6=j

| φTi φj |
‖φi‖2‖φj‖2

. (3)
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A note on binary sensing matrices

Terense Tao and Candes proposed an alternative approach
establishing the stated equivalence

Definition

We say that a matrix Φ satisfies Restricted Isometry Property
(RIP) of order k , if there is a 0 < δk < 1 such that

(1− δk)‖z‖l2 ≤ ‖ΦT z‖l2 ≤ (1 + δk)‖z‖l2 , z ∈ Rk , (4)

holds for all T of cardinality k .

The following theorem a establishes the equivalence between P0

and P1 problems through RIP

aE. Candes, “The restricted isometry property and its implications for
compressed sensing,” Comptes Rendus Mathematique, 2008
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A note on binary sensing matrices

Theorem

Suppose an m ×M matrix Φ has the RIP of order 2k with
constant δ2k <

√
2− 1, then P0 and P1 have same k−sparse

solution if P0 has a k−sparse solution.

The following proposition relates the RIP constant δk and µ

Proposition
a Suppose that Φ1, . . . ,ΦM are the unit norm columns of the
matrix Φ with coherence µ. Then Φ satisfies RIP of order k with
constant δk = (k − 1)µ.

aM. Elad, “Sparse and redundant representations; from theory to
applications in signal and image processing,” Springer, Berlin, 2010.
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A note on binary sensing matrices

Advantages with binary CS matrices

Binary matrices being sparse and possessing 0, 1 as elements
provide multiplier-less and faster dimensionality reduction
operation, which is not possible with their dense counterparts

These matrices have smaller density than Gaussian matrices.
Here, by density, one refers to the ratio of number of nonzero
entries to the total number of entries of the matrix

Definition

A binary matrix Φ is said to have a (r , k)-structure, if every
column of Φ contains k ones and the inner product between any
two columns is at most r , that is the mutual coherence of Φ is at
most r

k .
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A note on binary sensing matrices

Existing deterministic constructions

The first constructions of binary sensing matrices has been
given by R. Devore [4]a. The sizes of the constructed matrices
are p2 × pl+1 with coherence l

p . This construction has
(l , p)-structure,for a prime power p and 1 < l < p.

S. Li. et. al. [5] have generalized the work in [4] and
constructed the matrices of |P|q × qL(G), where q is any
prime power and P is the set of all rational points on algebraic
curve X over finite field Fq and G is a divisor of X such that
deg(G ) < |P|. This construction has (deg(G ),P)-structure.

aRonald A. DeVore, “Deterministic constructions of compressed sensing
matrices,” Journal of Complexity, Volume 23,pp 918-925, 2007.
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A note on binary sensing matrices

Existing deterministic constructions

The authors in [5]a have constructed binary sensing matrices
using Euler squares with size being nk × n2 and coherence 1

k ,
where n = pr1

1 pr2
2 . . . p

rl
l and k = min{pr1

1 , p
r2
2 , . . . , p

rl
l } − 1

with pi is a prime for 1 ≤ i ≤ l and ri is a positive
integer.This construction has (1, k)−structure.

The authors in [4]b have constructed binary sensing matrices
using finite geometry. These matrices possess (1, q),
(1, q + 1) and (2, q + 1)-structure for a prime power q.

aR. Ramu Naidu, P. V. Jampana and C. S. Sastry, “Deterministic
compressed sensing matrices: Construction via Euler Squares and applications,”
IEEE Transactions on Sig. Proc., vol. 64, no. 14, pp. 3566-3575, 2016.

bS. Li and G. Ge, “Deterministic construction of sparse sensing matrices via
finite geometry,” IEEE Trans. Signal Process., vol. 62, 2850-2859, 2014.
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A note on binary sensing matrices

Motivation

All the existing constructions have (r , k)-structure for
particular family of numbers

Objective

To construct general size (r , k)-structure and sparse
binary sensing matrices which are useful for fast processing

The sparse CS matrix may contribute to fast processing with
low computational complexity in Compressed Sensinga

aA. Gilbert et. al., “Sparse recovery using sparse matrices,” Proceedings of
IEEE, 2010.
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A note on binary sensing matrices

A. Extremal set theory for binary sensing matrices

Let r , k,m be positive integers such that r < k < m and X an m
element set, that is, X = {1, 2, . . . ,m} . Define
[X ]k = {H ⊆ X , |H| = k}. Any subset F of [X ]k is called a
k−uniform family.

Definition

Any subset Fd(r , k ,m) of [X ]k is called r−dense if any r−element
subset of X is contained in at least one member of Fd .

Definition

Any subset Fs(r , k ,m) of [X ]k is called r−sparse if any r−element
subset of X is contained in at most one member of Fs , that is,
|Fi ∩ Fj | ≤ r − 1, ∀Fi ,Fj ∈ Fs . Define n(m, k , r) to be the
maximum possible cardinality of Fs .
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A note on binary sensing matrices

A. Extremal set theory for binary sensing matrices

Definition

Any subset FS(r , k,m) of [X ]k is called a Steiner system if every
r−element subset of X is belongs to exactly one member of FS

Some of the necessary ‘divisibility conditions’ for the existence
of Steiner systems are as follows:(

k − i

r − i

)
divides

(
m − i

r − i

)
for all 0 ≤ i ≤ r − 1.

Clearly the Steiner system FS(r , k,m) is a subset of r−sparse
set Fs(r , k ,m).
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A note on binary sensing matrices

A. Extremal set theory for binary sensing matrices

The following proposition relates the r−sparse sets and binary
sensing matrices which possess (r − 1, k)−structure.

Proposition

There is a one-one correspondence between the set of all r−sparse
k−uniform families and binary sensing matrices which possess
(r − 1, k)−structure.

Therefore using r−sparse sets, one can construct binary sensing
matrices with coherence at most r−1

k .

Proposition

If F is an r−sparse family with cardinality M on an m element set
X , then the incidence matrix Φm×M of F has coherence r−1

k and
Φ = 1√

k
Φ satisfies RIP with δk ′ = (k ′ − 1)( r−1k ) for any

k ′ < k
r−1 + 1. 15 / 34



A note on binary sensing matrices

Some examples of r-sparse sets

The binary construction in [4], has (r , p)−structure with sizes
being p2 × pr+1. This construction is a (r + 1)−sparse p
uniform family on a set X = {1, 2, . . . , p2}.
The construction in [5], has (1, k)−structure with sizes being
nk × n2. This construction is a 2−sparse k uniform family set
on a set X = {1, 2, . . . , nk}.
The construction in [4], has fall in the r−sparse family of
Fs(2, q, q3), Fs(2, q + 1, (q3 + 1)) and Fs(3, q + 1, (q2+)).

The Steiner system FS(r , k ,m) is fall in the r−sparse family
of Fs(r , k ,m).

Remark 1: The r−sparse family is the super class of all the
existing binary constructions which have the (r − 1, k)−structure.
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A note on binary sensing matrices

Extremal set theory for binary sensing matrices

Proposition

a If Fs ⊆ [X ]k and Fs is an r−sparse family, then

|Fs | ≤
(m
r

)(k
r

) . (5)

aG. Katona, T. Nemetz and M. Simonovits, “On a graph-problem of Turan,”
Mat. Lapok, 15, 228-238, 1964.

Therefore, the maximum possible column size of a binary
sensing matrix which possess (r − 1, k)−structure is at most
(mr )
(kr)

, where m is the row size, k is the number of ones each

column contains and r − 1 is the inner product between any
two columns.
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A note on binary sensing matrices

Extremal set theory for binary sensing matrices

In [3] Vojtech Rodl has proved the following theorem.

Theorem

limm→∞ n(m, k, r)
(kr)
(mr )

= 1, for every pair (r , k) with r < k .

In the proof of the above theorem, using probabilistic
methods, the author has constructed r− sparse family
Fs(r , k ,m), for sufficiently large m and every fixed r , k with
r < k .

Remark 2: For sufficiently large m, by using the Rodl construction
one can generate (r , k)−structure binary sensing matrices with
asymptotically optimal column size for any r and k with r < k .
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A note on binary sensing matrices

Extremal set theory for binary sensing matrices

Theorem
a For fixed r , k there exist m0(r , k) such that if m > m0(r , k)
satisfies the divisibility condition then a Stenier system FS(r , k ,m)
exists.

aP. Keevash, “The existence of designs,” arXiv preprint arXiv:1401.3665,
2014.

Therefore using his construction and from Proposition-9, we
conclude the following theorem:

Theorem

For every pair of integers (r , k) with r < k there exist a
(r , k)−structure binary sensing matrix Φ with optimal column size.
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A note on binary sensing matrices

Extremal set theory for binary sensing matrices

In the above theorem, row size m is some integer which satisfies

the divisibility condition and the column size M =
(mr )
(kr)

.
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Figure : Comparison of the reconstruction performances of the
synthesized matrices and Gaussian random matrices when the matrices
are of size (a) 78× 169 (top plot). These plot indicate that the matrices
constructed from r−sparse sets show superior performance for some
sparsity levels, while for other levels both matrices result in the same
performance. The x and y axes in both plots refer respectively to the
sparsity level and the success rate (in % terms).
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A note on binary sensing matrices

Extremal set theory for binary sensing matrices

Figure : Original image

Figure : For the original image of size 256× 256 in Figure 2, the image
on the left is reconstructed via the matrix constructed from r−sparse sets
and the right image is obtained via the corresponding Gaussian matrix
with a down-sampling factor of two. This figure states that the
constructed matrix provides competitive reconstruction performance. 21 / 34



Simple construction of Euler Squares using polynomials
over finite field theory

Euler Squares

Definition

An Euler Square of order n, degree k and index n, k is a square
array of n2, k−ads, (aij1, aij2, . . . , aijk), where
aijr = 1, 2, . . . , n; r = 1, 2, . . . , k ; with i , j = 1, 2, . . . , n and n >
k ; aipr 6= aiqr and apjr 6= aqjr for p 6= q and
(aijr )(aijs) 6= (apqr )(apqs) for i 6= p and j 6= q.

Harris F. MacNeish a has constructed Euler Squares by using group
theoretical results for the following cases:

aH. F. MacNeish, “Euler squares,” Ann. Math., 1922.
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Simple construction of Euler Squares using polynomials
over finite field theory

Construction of Euler Squares

Index p, p − 1, where p is a prime number, more generally
Index pr , pr − 1, for a prime p

Index n, k, where n = 2rpr1
1 pr2

2 . . . , p
rl
l for distinct odd primes

p1, p2, . . . , pl and k = min{2r , pr1
1 , p

r2
2 , . . . , p

rl
l } − 1

In the present work, we give a simpler construction of Euler
Squares using polynomials over finite fields

Let us first construct Euler Square of index p, k , where p is a
prime or prime power

Consider the polynomials of degree at most one over a finite
field Fp = {f1 = 0, f2 . . . , fp} of order p. For sake of simplicity
of notation in the later part, let us denote fi = i to form an
order among the elements of Fp.
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Simple construction of Euler Squares using polynomials
over finite field theory

Construction of Euler Squares

Let us denote the set of polynomials of degree at most one as
Dp
1 = {P1

ij = fix + fj : i , j = 1, . . . , ...., p}
There are p2 number of polynomials of degree at most one,
that is cardinality of Dp

1 is p2

Form a k−tuple Skp = (f2, ...., fk+1), for 1 ≤ k ≤ p − 1

Evaluating a polynomial P1
ij of Dp

1 at every point of Skp , we
form an ordered k−tuple
P1
ij (Skp) = (P1

ij (f2), . . . ,P1
ij (fk+1)) ∈ Fk

p

Let us denote S1
kp

= {P1
ij (Skp) : i , j = 1, . . . , p} ⊆ Fk

p . Now

|S1
kp
| = p2.
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Simple construction of Euler Squares using polynomials
over finite field theory

Construction of Euler Squares

Claim: S1
kp

forms an Euler Square of index p, k .

Proof: To show,
S1
kp

= {P1
ij (Skp) = (P1

ij (f2), . . . ,P1
ij (fk+1) : i , j = 1, . . . , p}

forms an Euler Square of index p, k , we need to show that, for
q, s = 2, . . . , k + 1, P1

in(fq) 6= P1
im(fq) and P1

nj(fq) 6= P1
mj(fq)

for n 6= m and P1
ij (fq)P1

ij (fs) 6= P1
nm(fq)P1

nm(fs) for i 6= n and
j 6= m.

Case 1:For n 6= m, P1
in = fix + fn and P1

im = fix + fm doesn’t
have any common root and that shows that P1

in(fq) 6= P1
im(fq).

Case 2: For n 6= m, P1
nj = fnx + fj and P1

mj = fmx + fj have
one common root at f1 = 0 and that shows that
P1
nj(fr ) 6= P1

mj(fr ), as 1 6= r .
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Simple construction of Euler Squares using polynomials
over finite field theory

Construction of Euler Squares

Case 3: For i 6= n and j 6= m, P1
ij and P1

nm can have at most
one common root and that shows that
P1
ij (fq)P1

ij (fs) 6= P1
nm(fq)P1

nm(fs).

Therefore, using polynomials of degree at most one, we are
able to construct an Euler Square of index p, k for p being
prime or prime power and k ≤ p − 1.

Example: To construct Euler Square of index 3, 2, we
consider field F3 = Z3 = {0, 1, 2}.
Then the set D1

3 = {P1
ij : i , j = 0, 1, 2} consist of all

polynomials of degree at most one over Z3.

Note that |D1
3 | = 9. Let us fix S23 = (1, 2) as ordered 2−tuple.
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Simple construction of Euler Squares using polynomials
over finite field theory

Construction of Euler Squares

Evaluating every polynomial of D1
3 at every point of S23 , we

get the set S1
23

=
{(0, 0), (1, 2), (2, 1); (1, 1), (2, 0), (0, 2); (2, 2), (0, 1), (1, 0)} ⊆
Z2
3.

Now it is easy to check that S1
23

forms an Euler Square of
index 3, 2 after denoting 0 = 1, 1 = 2 and 2 = 3.
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Part III: Conclusions and Future Work
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Conclusions and Future Work

So far the objectives behind my work have centered around
constructing binary sensing matrices

I am now interested in constructing more general matrices,
through Majorization and minimization methods

In our present work we present a simple construction to
generate Euler Square using polynomials of degree at most
one over finite field

Further we want to generalize our construction idea to define
Generalized Euler Squares (GES) and construct them using
higher degree polynomials over finite field

As an application, compressed sensing matrices can be
generate from Generalized Euler Squares
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