Hierarchically Sparse MIMO Channel Estimation using L-SBL

Unnikrishnan N

Indian Institute of Science

unnikrishnann@iisc.ac.in

November 19, 2019

Hierarchical Sparse Model

- 2 Thresholding Based Sparse Recovery Algorithms
- ③ MIMO Channel Model
- 4 DNN based Solution

Hierarchical Sparse Model

Model

$$\label{eq:constraint} \begin{array}{l} \textbf{y} = \textbf{A}\textbf{x} + \textbf{z} \\ \text{where } \textbf{y}, \textbf{z} \in \mathbb{R}^{M} \text{, } \textbf{x} \in \mathbb{R}^{N} \text{ and } \textbf{A} \in \mathbb{R}^{M \times N} \end{array}$$

Problem Statement

given **y**, estimate $\mathbf{x} \ni ||\mathbf{x}||_0 \le K$ and $K < M \ll N$

Hierarchical Model - Definition

Let $\mathbf{s} = \{s_1, s_2, \dots, s_l\}$ be an *l*-tuple of natural numbers and consider an *l*-level block vector $\tilde{x} \in \mathbb{C}^{N_1 \cdot N_2 \cdots N_l}$ with $N_i \ge s_i, i \in [l]$. \tilde{x} is **s**-hierarchically sparse (s-Hi-sparse) if it has the property of hierarchical s-sparsity defined inductively as follows:

- For $l = 1, \tilde{x}$ is s-Hi-sparse if atmost s_1 of its N_1 elements are non-zero.
- For l > 1, x̃ is s-Hi-sparse if it consists of N₁ blocks and atmost s₁ of these are non-zero with each non-zero block being s₂,..., s_l-Hi-sparse.

Hierarchical Sparsity Illustration

Figure: Illustration of the sequence of actions of Thresholding operator $T_{(1,2,2)}()$ on a three-level block vector in $C^{2\cdot 3\cdot 5}(2$ blocks of 3 blocks of 5 elements each).

Unnikrishnan N (SPC lab ECE)

Motivation for Iterative Thresholding Methods

A weakness of the OMP algorithm is that, once an incorrect index has been selected in a target support S^n , it remains in all the subsequent target supports $S^{n'}$ for $n' \ge n$. Hence, if an incorrect index has been selected, *s* iterations of the orthogonal matching pursuit are not enough to recover a vector with sparsity *s*.

Iterative Thresholding Algorithms

- IHT(Iterative Hard Thresholding)
- HTP(Hard Thresholding Pursuit)

Thresholding Based Sparse Recovery Algorithms

Motivation for Iterative Methods

From classical iteration techniques for $y = \mathbf{A}x$ and **A** is square, then

$$x = (\mathbf{I} - \mathbf{A})x + y$$
$$x^{n+1} = (\mathbf{I} - \mathbf{A})x^n + y$$

If **A** is fat then modify $y = \mathbf{A}x$ problem to $\mathbf{A}^*y = \mathbf{A}^*\mathbf{A}x$.

$$x^{n+1} = (\mathbf{I} - \mathbf{A}^* \mathbf{A})x^n + \mathbf{A}^* y$$
$$x^{n+1} = x^n + \mathbf{A}^*(y - \mathbf{A}x^n)$$

for convergence $||\textbf{I}-\textbf{A}||_2<1$ in the first case and $||\textbf{I}-\textbf{A}^*\textbf{A}||_2<1$ in the second case. So problem modified to

$$x^{n+1} = x^n + \mu \mathbf{A}^* (y - \mathbf{A} x^n)$$

- *input* : measurement matrix **A**, measurement vector y, sparsity k
- **2** *initialization* : *k*-sparse vector \mathbf{x}^0 , typically $x^0 = \mathbf{0}$
- *iteration* : repeat until a stopping criteria is met at $n = \overline{n}$:

$$\mathbf{x}^{n+1} = H_k(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))$$

where H_k is hard thresholding operator that keeps k largest absolute entries and sets the other ones to zero

• output : the k-sparse vector $\mathbf{x}^* = \mathbf{x}^{\bar{n}}$

- **(1)** *input* : measurement matrix **A**, measurement vector **y**, sparsity k
- **2** *initialization* : *k*-sparse vector \mathbf{x}^0 , typically $\mathbf{x}^0 = \mathbf{0}$
- 3 *iteration* : repeat until a stopping criteria is met at $n = \overline{n}$:

$$S^{n+1} = L_k(\mathbf{x}^n + \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))$$
$$\mathbf{x}^{n+1} = \underset{\mathbf{z} \in \mathbb{R}^N}{\operatorname{argmin}} \left\{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1} \right\}$$

where L_k is the index operator that returns set of first k absolute largest entries of a vector and S^n is the index set optained in n^{th} iteration

• output : the k-sparse vector
$$\mathbf{x}^* = \mathbf{x}^{\bar{n}}$$

Iterative Sparse Recovery Algorithms - Assuming Hierarchical Structure

Modified Iterative Algorithms

- HilHT(Hierarchical Iterative Hard Thresholding)
- HiHTP(Hierarchical Hard Thresholding Pursuit)

1 *input* : **A**, **y**, **s**-Hi sparse vector. where $\mathbf{s} = (s_1, s_2, \dots, s_l)$

- ② *initialization* : **s**-Hi sparse vector \mathbf{x}^0 , typically $\mathbf{x}^0 = \mathbf{0}$
- 3 *iteration* : repeat until a stopping criteria is met at $n = \bar{n}$: $\mathbf{x}_{temp} = \mathbf{x}^n + \mathbf{A}^* (\mathbf{y} - \mathbf{A}\mathbf{x}^n)$ $S^{n+1} = T_{s}(\mathbf{x}^{n} + A^{*}(\mathbf{y} - A\mathbf{x}^{n}))$ if HilHT $\mathbf{x}^{n+1} = \mathbf{0} \in \mathbb{R}^N$ $\mathbf{x}_{Sn+1}^{n+1} = \mathbf{x}_{temp,S^{n+1}}$ else if HiHTP $\mathbf{x}^{n+1} = \operatorname{argmin} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \operatorname{supp}(\mathbf{z}) \subseteq S^{n+1} \}$ 7⊂RN where T_s is Thresholding operator for s-Hi sparse vector • output : the **s**-Hi sparse vector $\mathbf{x}^* = \mathbf{x}^{\bar{n}}$

Algorithm - Thresholding Operator

- input : $\tilde{\mathbf{x}} \in \mathbb{C}^{N_1 \cdot N_2 \cdots N_l}$, $\mathbf{s} = (s_1, s_2, \dots, s_l)$, $l \ge 2$.
- initialization : z = x
- So For each of the N₁ · N₂ · · · N_{I-1} blocks at level I − 1 of z, identify the s_I (out of a total N_I) largest-modulus elements and set the remaining elements equal to zero.
- iteration : stops when k = 0, where k = l − 2 while(k ≥ 1)

For each of the $N_1 \cdot N_2 \cdots N_k$ blocks at level k of z, identify the s_{k+1} (out of a total N_{k+1}) blocks with the largest Euclidean norm and set the elements of the remaining blocks equal to zero.

$$k = k - 1$$

end while

output : the s-Hi sparse vector z

Sequence of Operation of Thresholding Operator

Figure: Illustration of the sequence of actions of Thresholding operator $T_{(1,2,2)}()$ on a three-level block vector in $C^{2\cdot 3\cdot 5}(2$ blocks of 3 blocks of 5 elements each).

Unnikrishnan N (SPC lab ECE)

MIMO Channel Model

Consider an uplink channel of a single cell with a BS equipped with $M \gg 1$ antenna elements serving multiple single antenna UEs. Array manifold for a ULA is

$$\mathbf{a}(heta) \triangleq [1, e^{-j2\pi heta} \dots, e^{-j2\pi(M-1) heta}]^T$$

where $\theta = d \sin \phi$, d is normalized spatial separation and $\phi \in [-\pi/2, \pi/2]$ Consider a steering dictionary (sampled version)

$$\mathbf{A}_{ heta} riangleq [\mathbf{a}(0), \mathbf{a}(1/M) \dots, \mathbf{a}((M-1)/M)] = \mathbf{F}_{M,M} \in \mathbb{C}^{M imes M}$$

Consider transmissions are performed via wideband OFDM signals with $N \gg 1$ subcarriers centered at the baseband frequencies $\{2\pi k/N\}_{k=0}^{N-1}$, with $T_s > 0$ OFDM symbol duration. The delay manifold

$$\mathbf{b}(\tau) \triangleq [1, e^{-j2\pi\tau/T_s}, \dots, e^{-j2\pi(N-1)\tau/T_s}]^T$$

Consider sampled version of delay as $\{kT_s/N\}_{k=0}^{N-1}$

$$\mathbf{A}_{\tau} \triangleq [\mathbf{b}(0), \mathbf{b}(T_s/N) \dots, \mathbf{b}((D-1)T_s/N)] = \mathbf{F}_{N,D} \in \mathbb{C}^{N \times D}$$

where $D = \alpha N, \alpha < 1$ corresponds to maximum delay spread ~ 2 ~ 2 ~ 2 Unnikrishnan N (SPC lab ECE) Hierarchical Sparsity November 19, 2019 13/23

MIMO Channel Model

Channel of an arbitrary UE is a superposition of a small number L of impinging wavefronts characterized by delay,angle pairs $\{\tau_p, \theta_p\}_{p=0}^{L-1}$ with $\tau_p \in [0, \alpha T_s]$ and $\theta_p \in [0, 1]$. The channel transfer matrix is given by

$$\mathbf{H} = \sum_{p=0}^{L-1} \rho_p \mathbf{b} \left(\tau_p \right) \mathbf{a}^H \left(\theta_p \right)$$

where $\rho_p \in \mathbb{C}$ is the complex gain of the *p*-th path. Here *L* is known and is independent of system parameters *M* and *N*. Based on sampled version of array manifold and delay manifold the above equation can be written as

$$\begin{aligned} \mathbf{H} &= \mathbf{A}_{\tau} \mathbf{X} \mathbf{A}_{\theta}^{H} \\ \mathbf{X} &\triangleq \sum_{p=0}^{L-1} \rho_{p} \mathbf{e}_{k_{p}, D} \mathbf{e}_{l_{p}, M}^{T} \in \mathbb{C}^{D \times M} \\ \tau_{p}, \theta_{p}) &= (k_{p} T_{s} / N, l_{p} / M) \end{aligned}$$

where $\mathbf{e}_{n,N} \in \mathbb{C}^N$ denoting the canonical basis with *n*th element is 1.

Multiuser Channel Estimation problem

BS partitions the uplink UEs to groups of U UEs. Each group is assigned exclusive set of pilot subcarriers. Consider a single group with $V \leq U$ active UEs and $\mathcal{N}_p \subset [N]$ subcarriers, $\mathcal{M}_p \subset [M]$ antennas at BS. Observation at the BS during pilot transmission is (\mathbf{c}_u is pilot signature)

$$\mathbf{Y} = \sum_{u=0}^{U-1} \text{diag}\left(\mathbf{c}_{u}\right) \mathbf{P}_{\mathcal{N}_{p}} \mathbf{H}_{u} \mathbf{P}_{\mathcal{M}_{p}}^{T} + \mathbf{Z} \in \mathbb{C}^{N_{p} \times M_{p}}$$

where $c_u \in \mathbb{C}^{N_p}$, $H_u \in \mathbb{C}^{N \times M}$, $\mathbf{P}_{\mathcal{N}_p} \in I_{N,N_p}$ and $\mathbf{P}_{\mathcal{M}_p} \in I_{M,M_p}$ can be written in terms of delay angle combination as

$$\begin{split} \mathbf{Y} &= \bar{\mathbf{A}}_{\tau} \bar{\mathbf{X}} \bar{\mathbf{A}}_{\theta}^{H} + \mathbf{Z} \in \mathbb{C}^{N_{p} \times M_{p}} \\ \bar{\mathbf{A}}_{\tau} &\triangleq \frac{1}{\sqrt{N_{p}}} \left[\text{diag} \left(\mathbf{c}_{0} \right) \mathbf{P}_{\mathcal{N}_{p}} \mathbf{A}_{\tau}, \dots, \text{diag} \left(\mathbf{c}_{U-1} \right) \mathbf{P}_{\mathcal{N}_{p}} \mathbf{A}_{\tau} \right] \\ \bar{\mathbf{A}}_{\theta} &\triangleq \frac{1}{\sqrt{M_{p}}} \mathbf{P}_{\mathcal{M}_{p}} \mathbf{A}_{\theta} \\ \bar{\mathbf{X}} &\triangleq \left[\mathbf{X}_{0}^{T}, \mathbf{X}_{1}^{T}, \dots, \mathbf{X}_{U-1}^{T} \right]^{T} \end{split}$$

Unnikrishnan N (SPC lab ECE)

Problem Formulation to CS Framework

$$egin{aligned} \mathbf{y} &= \mathbf{A}\mathbf{x} + \mathbf{z} \in \mathbb{C}^{N_p M_p} \ \mathbf{y} &= vec(\mathbf{Y}) \ \mathbf{A} &\triangleq ar{\mathbf{A}}^*_{ heta} \otimes ar{\mathbf{A}}_{ au} \ \mathbf{x} &\triangleq vec(ar{\mathbf{X}}) \end{aligned}$$

How hierarchy comes

$$\begin{split} \mathbf{x} \in \mathbb{C}^{M \cdot U \cdot D} \\ \text{out of } M \text{ angles at max } LV \text{ number of angles are present and } LV \leq M \ (M \\ \text{being large}) \\ \text{At max at every } UD, \ V \text{ active UEs are present.} \\ \text{At max at every } D, \ L \text{ delays can be present.} \end{split}$$

Unnikrishnan N (SPC lab ECE)

Reduced Model

- Chosen a few antennas $M_p < M$ for reception
- **②** Chosen a few subcarries for each group $N_p < N$
- **③** Chosen random subset of antennas $\mathcal{M}_p \subset [M]$
- Chosen random subset of subcarriers $\mathcal{N}_p \subset [N]$

First two points are for complexity reduction and third and fourth points are for satisfying CS(compressed sensing) recovery conditions.

Modifications

- Measurement matrix A generation for lower mutual coherence.
- ② Reformulated the problem from complex to real for training
- Itierarchical sparse vector generations
- **•** Used L-SBL (with 11 layers) to learn the recovery from measurements.

L-SBL

Its a unfolded version of SBL(sparse bayesion learning) algorithm.

Simulation Results

Measurement matrix ${\bm A}$ as random 30 \times 50 and no structure in sparsity.

Figure: RMSE of sparse recovery using multiple algorithms with random matrix (30x50)

Unnikrishnan N (SPC lab ECE)

November 19, 2019 19 / 23

Simulation Results

Measurement matrix $\boldsymbol{\mathsf{A}}$ as random 30 \times 50 and (1,5,5) Hi-sparse structure is used.

Figure: RMSE of sparse recovery using multiple algorithms with random matrix one

Unnikrishnan N (SPC lab ECE)

Hierarchical Sparsity

Conclusion

- Various iterative thresholding algorithms were discussed.
- Itierarchical sparse recovery based on HilHT/HiHTP were discussed.
- S-Hi sparse vector recovery using L-SBL is tried out for lower dimensions.
- **O** Recovery performance of L-SBL is better than *HilHT/HiHTP*.

Future Scope

Extend to higher dimensions

- Elad, Michael, "Sparse and Redundant Representations From Theory to Applications in Signal and Image Processing", 2010
- S. Foucart and H. Rauhut, A "Mathematical Introduction to CompressiveSensing", Birkhuser, 2013.
- G. Wunder, S. Stefanatos, A. Flinth, I. Roth and G. Caire, "Low-Overhead Hierarchically-Sparse Channel Estimation for Multiuser Wideband Massive MIMO," in IEEE Transactions on Wireless Communications, vol. 18, no. 4, pp. 2186-2199, April 2019.

Thank You

< □ > < 同 >

æ