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Hierarchical Sparse Model

Model

y = Ax + z
where y, z ∈ RM , x ∈ RN and A ∈ RM×N

Problem Statement

given y, estimate x 3 ||x||0 ≤ K and K < M � N

Hierarchical Model - Definition

Let s = {s1, s2, . . . , sl} be an l-tuple of natural numbers and consider an
l-level block vector x̃ ∈ CN1·N2···Nl with Ni ≥ si ,i ∈ [l ]. x̃ is s-hierarchically
sparse (s-Hi-sparse) if it has the property of hierarchical s-sparsity defined
inductively as follows:

For l = 1,x̃ is s-Hi-sparse if atmost s1 of its N1 elements are non-zero.

For l > 1, x̃ is s-Hi-sparse if it consists of N1 blocks and atmost s1 of
these are non-zero with each non-zero block being s2, . . . , sl -Hi-sparse.
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Hierarchical Sparsity Illustration

Figure: Illustration of the sequence of actions of Thresholding operator T(1,2,2)()
on a three-level block vector in C 2·3·5(2 blocks of 3 blocks of 5 elements each).
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Thresholding Based Sparse Recovery Algorithms

Motivation for Iterative Thresholding Methods

A weakness of the OMP algorithm is that, once an incorrect index has
been selected in a target support Sn ,it remains in all the subsequent
target supports Sn′ for n′ ≥ n. Hence, if an incorrect index has been
selected, s iterations of the orthogonal matching pursuit are not enough to
recover a vector with sparsity s.

Iterative Thresholding Algorithms

IHT(Iterative Hard Thresholding)

HTP(Hard Thresholding Pursuit)
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Thresholding Based Sparse Recovery Algorithms

Motivation for Iterative Methods

From classical iteration techniques
for y = Ax and A is square, then

x = (I− A)x + y

xn+1 = (I− A)xn + y

If A is fat then modify y = Ax problem to A∗y = A∗Ax .

xn+1 = (I− A∗A)xn + A∗y

xn+1 = xn + A∗(y − Axn)

for convergence ||I− A||2 < 1 in the first case and ||I− A∗A||2 < 1 in the
second case. So problem modified to

xn+1 = xn + µA∗(y − Axn)

optimum µ varies with iterationUnnikrishnan N (SPC lab ECE) Hierarchical Sparsity November 19, 2019 6 / 23



Algorithm -IHT

1 input : measurement matrix A, measurement vector y , sparsity k

2 initialization : k-sparse vector x0, typically x0 = 0

3 iteration : repeat until a stopping criteria is met at n = n̄ :

xn+1 = Hk(xn + A∗(y − Axn))

where Hk is hard thresholding operator that keeps k largest absolute
entries and sets the other ones to zero

4 output : the k-sparse vector x∗ = xn̄
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Algorithm -HTP

1 input : measurement matrix A, measurement vector y, sparsity k

2 initialization : k-sparse vector x0, typically x0 = 0

3 iteration : repeat until a stopping criteria is met at n = n̄ :

Sn+1 = Lk(xn + A∗(y − Axn))

xn+1 = argmin
z∈RN

{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
where Lk is the index operator that returns set of first k absolute
largest entries of a vector and Sn is the index set optained in nth

iteration

4 output : the k-sparse vector x∗ = xn̄
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Iterative Sparse Recovery Algorithms - Assuming
Hierarchical Structure

Modified Iterative Algorithms

HiIHT(Hierarchical Iterative Hard Thresholding)

HiHTP(Hierarchical Hard Thresholding Pursuit)
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Algorithm-HiIHT and HiHTP

1 input : A, y, s-Hi sparse vector. where s = (s1, s2, . . . sl)

2 initialization : s-Hi sparse vector x0, typically x0 = 0

3 iteration : repeat until a stopping criteria is met at n = n̄ :
xtemp = xn + A∗(y − Axn)
Sn+1 = Ts(xn + A∗(y − Axn))

if HiIHT
xn+1 = 0 ∈ RN

xn+1
Sn+1 = xtemp,Sn+1

else if HiHTP
xn+1 = argmin

z∈RN

{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
where Ts is Thresholding operator for s-Hi sparse vector

4 output : the s-Hi sparse vector x∗ = xn̄
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Algorithm - Thresholding Operator

1 input : x̃ ∈ CN1·N2···Nl , s = (s1, s2, . . . , sl), l ≥ 2.

2 initialization : z = x

3 For each of the N1 · N2 · · ·Nl−1 blocks at level l − 1 of z, identify the
sl (out of a total Nl ) largest-modulus elements and set the remaining
elements equal to zero.

4 iteration : stops when k = 0, where k = l − 2
while(k ≥ 1)

For each of the N1 · N2 · · ·Nk blocks at level k of z, identify the
sk+1 (out of a total Nk+1) blocks with the largest Euclidean norm
and set the elements of the remaining blocks equal to zero.

k = k − 1
end while

5 output : the s-Hi sparse vector z
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Sequence of Operation of Thresholding Operator

Figure: Illustration of the sequence of actions of Thresholding operator T(1,2,2)()
on a three-level block vector in C 2·3·5(2 blocks of 3 blocks of 5 elements each).
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MIMO Channel Model

Consider an uplink channel of a single cell with a BS equipped with
M � 1 antenna elements serving multiple single antenna UEs. Array
manifold for a ULA is

a(θ) , [1, e−j2πθ . . . , e−j2π(M−1)θ]T

where θ = d sinφ, d is normalized spatial separation and φ ∈ [−π/2, π/2]
Consider a steering dictionary (sampled version)

Aθ , [a(0), a(1/M) . . . , a((M − 1)/M)] = FM,M ∈ CM×M

Consider transmissions are performed via wideband OFDM signals with
N � 1 subcarriers centered at the baseband frequencies {2πk/N}N−1

k=0 ,
with Ts > 0 OFDM symbol duration. The delay manifold

b(τ) , [1, e−j2πτ/Ts , . . . , e−j2π(N−1)τ/Ts ]T

Consider sampled version of delay as {kTs/N}N−1
k=0

Aτ , [b(0),b(Ts/N) . . . ,b((D − 1)Ts/N)] = FN,D ∈ CN×D

where D = αN, α ≤ 1 corresponds to maximum delay spread
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MIMO Channel Model

Channel of an arbitrary UE is a superposition of a small number L of
impinging wavefronts characterized by delay,angle pairs {τp, θp}L−1

p=0 with
τp ∈ [0, αTs ] and θp ∈ [0, 1]. The channel transfer matrix is given by

H =
L−1∑
p=0

ρpb (τp) aH (θp)

where ρp ∈ C is the complex gain of the p-th path. Here L is known and is
independent of system parameters M and N. Based on sampled version of
array manifold and delay manifold the above equation can be written as

H = AτXA
H
θ

X ,
L−1∑
p=0

ρpekp ,De
T
lp ,M ∈ CD×M

(τp, θp) = (kpTs/N, lp/M)

where en,N ∈ CN denoting the canonical basis with nth element is 1.
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Multiuser Channel Estimation problem

BS partitions the uplink UEs to groups of U UEs. Each group is assigned
exclusive set of pilot subcarriers. Consider a single group with V ≤ U
active UEs and Np ⊂ [N] subcarriers, Mp ⊂ [M] antennas at BS.
Observation at the BS during pilot transmission is (cu is pilot signature)

Y =
U−1∑
u=0

diag (cu)PNpHuP
T
Mp

+ Z ∈ CNp×Mp

where cu ∈ CNp , Hu ∈ CN×M , PNp ∈ IN,Np and PMp ∈ IM,Mp can be
written in terms of delay angle combination as

Y = Āτ X̄Ā
H
θ + Z ∈ CNp×Mp

Āτ ,
1√
Np

[
diag (c0)PNpAτ , . . . , diag (cU−1)PNpAτ

]
Āθ ,

1√
Mp

PMpAθ

X̄ ,
[
XT

0 ,X
T
1 , . . . ,X

T
U−1

]T
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Problem Formulation to CS Framework

y = Ax + z ∈ CNpMp

y = vec(Y)

A , Ā∗θ ⊗ Āτ

x , vec(X̄)

How hierarchy comes

x ∈ CM·U·D

out of M angles at max LV number of angles are present and LV ≤ M (M
being large)
At max at every UD, V active UEs are present.
At max at every D, L delays can be present.
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Design Criteria

Reduced Model
1 Chosen a few antennas Mp < M for reception

2 Chosen a few subcarries for each group Np < N

3 Chosen random subset of antennas Mp ⊂ [M]

4 Chosen random subset of subcarriers Np ⊂ [N]

First two points are for complexity reduction and third and fourth points
are for satisfying CS(compressed sensing) recovery conditions.
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DNN(Deep Neural Network) based Solution

Modifications
1 Measurement matrix A generation for lower mutual coherence.

2 Reformulated the problem from complex to real for training

3 Hierarchical sparse vector generations

4 Used L-SBL (with 11 layers) to learn the recovery from measurements.

L-SBL
1 Its a unfolded version of SBL(sparse bayesion learning) algorithm.
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Simulation Results

Measurement matrix A as random 30× 50 and no structure in sparsity.

Figure: RMSE of sparse recovery using multiple algorithms with random matrix
(30x50)
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Simulation Results

Measurement matrix A as random 30× 50 and (1,5,5) Hi-sparse structure
is used.

Figure: RMSE of sparse recovery using multiple algorithms with random matrix
(30x50)Unnikrishnan N (SPC lab ECE) Hierarchical Sparsity November 19, 2019 20 / 23



Conclusion And Future Scope

Conclusion
1 Various iterative thresholding algorithms were discussed.

2 Hierarchical sparse recovery based on HiIHT/HiHTP were discussed.

3 s-Hi sparse vector recovery using L-SBL is tried out for lower
dimensions.

4 Recovery performance of L-SBL is better than HiIHT/HiHTP.

Future Scope

1 Extend to higher dimensions
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