Ramanujan Sums in the Context of Signal Processing

Pradip Sasmal

IISc Bangalore

August 24, 2019

Ramanujan Sum

- The Ramanujan sum:

$$
\begin{equation*}
c_{q}(n)=\sum_{\substack{k=1 \\ k, q)=1}}^{q} e^{j 2 \pi k n / q} \tag{1}
\end{equation*}
$$

- $c_{10}(n)=e^{j 2 \pi n / 10}+e^{j 6 \pi n / 10}+e^{j 14 \pi n / 10}+e^{j 18 \pi n / 10}$.
- An arithmetic function $x(n)$: infinite sequence defined for $1 \leq n \leq \infty$, and is usually (but not necessarily) integer valued.
- Examples: the Mobius function $\mu(n)$, Euler's totient function $\Phi(n)$.
- $x(n)=\sum_{q=1}^{\infty} \alpha_{q} c_{q}(n), \quad n \geq 1$.
- The Ramanujan Fourier transform expansion (i.e., α_{q} are the RFT coefficients)

[^0]
Continue

- The $q^{\text {th }}$ Ramanujan sum $(q \geq 1)$ is a sequence in n defined as

$$
c_{q}(n)=\sum_{\substack{k=1 \\(k, q)=1}}^{q} e^{j 2 \pi k n / q}=\sum_{\substack{k=1 \\(k, q)=1}}^{q} W_{q}^{-k n}
$$

$W_{q}=e^{-j 2 \pi / q}$ is the qth root of unity

- $c_{q}(0)=\phi(q), c_{q}(n+q)=c_{q}(n)$
- the DFT of $c_{q}(n)$:

$$
C_{q}[k]=\sum_{n=0}^{q-1} c_{q}(n) W^{n k}= \begin{cases}q & \text { if }(k, q)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Continue

- $c_{q}(n)=\sum_{\substack{k=1 \\(k, q)=1}}^{q} W_{q}^{k n}=\sum_{\substack{k=1 \\(k, q)=1}}^{q} W_{q}^{-k n}=\sum_{\substack{k=1 \\(k, q)=1}}^{q} \cos \frac{2 \pi k n}{q}$
- The Ramanujan sum has period q in the argument n. Unlike sines and cosines, the quantity $c_{q}(n)$ is always integer valued, which is often an attractive property.
- The first few Ramanujan sequences, shown for one period $0 \leq n \leq q-1$.
$c_{1}(n)=1, c_{2}(n)=1,-1, c_{3}(n)=2,-1,-1$,
$c_{4}(n)=2,0,-2,0, c_{5}(n)=4,-1,-1,-1,-1$,
$c_{6}(n)=2,1,-1,-2,-1,1$,
$c_{7}(n)=6,-1,-1,-1,-1,-1,-1$,
$c_{8}(n)=4,0,0,0,-4,0,0,0, c_{9}(n)=6,0,0,-3,0,0,-3,0,0$,
$c_{10}(n)=4,1,-1,1,-1,-4,-1,1,-1,1$.

Properties:

- α primitive $q^{\text {th }}$ root of unity if $\alpha^{q}=1$, but $\alpha^{n} \neq 1$ for any positive integer $n<q$. $W^{-k q}$ a primitive $q^{\text {th }}$ root of unity iff $(q, k)=1$. So the Ramanujan sum $c_{q}(n)$ can be defined as the sum of $n^{\text {th }}$ powers of all the $q^{\text {th }}$ primitive roots of unity.
- $\sum_{n=0}^{q-1} c_{q}(n)=0, \quad$ for $q>1$.
- $\sum_{n=0}^{q-1} c_{q}^{2}(n)=q \phi(q)$
- Orthogonality: Any two Ramanujan sums $c_{q_{1}}(n)$ and $c_{q_{2}}(n)$ are orthogonal in the sense that

$$
\sum_{n=0}^{m-1} c_{q_{1}}(n) c_{q_{2}}(n)=0, \quad q_{1} \neq q_{2}
$$

where $m=\operatorname{lcm}\left(q_{1}, q_{2}\right)$.

- For q prime: $c_{q}(n)= \begin{cases}q-1 & \text { if } n=\text { mul. of } q \\ -1 & \text { otherwise. }\end{cases}$
- For $q=p^{m}: c_{p^{m}}(n)= \begin{cases}0 & \text { if } p^{m-1} \nmid n \\ -p^{m-1} & \text { if } p^{m-1} \mid n \text { but } p^{m} \nless n \\ p^{m-1}(p-1) & \text { if } \mathrm{p}^{m} \mid n\end{cases}$
- Multiplicative property: $c_{q_{1} q_{2}}(n)=c_{q_{1}}(n) c_{q_{2}}(n)$.
- the Mobius function: $\mu(n)= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ (-1)^{K} & \text { if } \mathrm{n}=\mathrm{p}_{1} p_{2} \ldots p_{K} \\ 0 & \text { otherwise. }\end{cases}$
- $c_{q}(n)=\mu(q), \quad$ whenever $(q, n)=1$.

Ramanujan Subspace:

$-\mathbf{B}_{\mathbf{q}}=\left[\begin{array}{ccccc}c_{q}(0) & c_{q}(q-1) & c_{q}(q-2) & \ldots & c_{q}(1) \\ c_{q}(1) & c_{q}(0) & c_{q}(q-1) & \ldots & c_{q}(2) \\ c_{q}(2) & c_{q}(1) & c_{q}(0) & \ldots & c_{q}(3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{q}(q-2) & c_{q}(q-3) & c_{q}(q-4) & \ldots & c_{q}(q-1) \\ c_{q}(q-1) & c_{q}(q-2) & c_{q}(q-3) & \ldots & c_{q}(0)\end{array}\right]$

- Ramanujan Space: The column space of $\mathbf{B}_{\mathbf{q}}$ will be called the Ramanujan subspace $\mathbf{S}_{\mathbf{q}}$.
- $c_{q}(n)$, and all its circularly shifted versions, belong to this space.
- Rank and dimension: There are $\phi(q)$ nonzero eigenvalues, and $\mathbf{B}_{\mathbf{q}}$ has rank $\phi(q)$. So, $\mathbf{S}_{\mathbf{q}}$ has dimension $\phi(q)$.
- Positive semidefiniteness: $\mathbf{B}_{\mathbf{q}}$ is Hermitian with nonnegative eigenvalues $\in\{0, q\}$, it is positive semidefinite.
- Factorization: The circulant $\mathbf{B}_{\mathbf{q}}$ can be factorized as

$$
\mathbf{B}_{q}=\underbrace{\mathbf{V}}_{q \times \phi(q)} \underbrace{\mathbf{V}^{\dagger}}_{\phi(q) \times q}
$$

where V a submatrix of the DFT matrix W obtained by retaining the "coprime columns", i.e., columns numbered k_{i} such that $\left(k_{i}, q\right)=1$.

- Any consecutive $\phi(q)$ columns of $\mathbf{B}_{\mathbf{q}}$ are linearly independent.

Finite duration (FIR) signals:

- Arithmetic function expansion:

$$
x(n)=\sum_{q=1}^{\infty} \alpha_{q} c_{q}(n), \quad n \geq 1
$$

where

$$
\alpha_{q}=\frac{1}{\phi(q)}\left(\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{n=1}^{M} x(n) c_{q}(n)\right)
$$

- Arithmetic functions (for which Ramanujan-sum expansions were originally used) are infinite duration sequences, and the coefficients have to be evaluated through the limiting process. But in the FIR case, with $x(n)$ equal to zero for all n except possibly in $1 \leq n \leq N$.

The First Ramanujan FIR Representation:

$$
\lim _{M \rightarrow \infty} \sum_{n=1}^{M} x(n) c_{q}(n) / M=\lim _{M \rightarrow \infty} \sum_{n=1}^{N} x(n) c_{q}(n) / M \rightarrow 0
$$

which shows that $\alpha_{q} \rightarrow 0$ for each q. Thus, the conventional approach does not lead to a correct expansion.

- Consider the expansion:

$$
x(n)=\sum_{q=1}^{N} a_{q} c_{q}(n), \quad 0 \leq n \leq N-1
$$

where the first N sequences $c_{q}(n)$ are all used.

Continue

$$
\underbrace{\left[\begin{array}{c}
x(0) \\
x(1) \\
\vdots \\
x(N-1)
\end{array}\right]}_{\mathbf{x}}=\mathbf{A}_{N} \underbrace{\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}\right]}_{\mathbf{a}},
$$

where $\mathbf{A}_{N}=\left[\begin{array}{llll}\mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{c}_{3} & \ldots \mathbf{c}_{N}\end{array}\right]$ and $\mathbf{c}_{m}=\left[\begin{array}{lllll}c_{m}(0) & c_{m}(1) & c_{m}(2) & \ldots & c_{m}(N-1)\end{array}\right]^{T}$

- Theorem: The matrix $\mathbf{A}_{\mathbf{N}}$ has full rank N and $\operatorname{det}\left(\mathbf{A}_{\mathbf{N}}\right)=(-\mathbf{1})^{\mathbf{N}-\mathbf{1}} \mathbf{N}$!
- $\mathbf{A}_{\mathbf{N}}$ is not an orthogonal matrix.

A Second Ramanujan Representation for FIR Signals

Replacing $c_{q}(n)$ With the Subspace $S_{q}(n)$

- Equivalent representation of $x(n)$:

$$
\mathbf{x}=\left[\begin{array}{llll}
\mathbf{c}_{q_{1}} & \mathbf{c}_{q_{2}} & \ldots & \mathbf{c}_{q_{K}}
\end{array}\right] \mathbf{d},
$$

where q_{i} are the K divisors of N.

- An arbitrary FIR sequence of length N cannot be represented as in conventional way if α_{q} is in conventional form. Only those FIR sequences which are in this column space can be represented.
- Each $c_{q_{i}}$ represents just one vector in the Ramanujan space $S_{q_{i}}$, which has dimension $\phi\left(q_{i}\right)$. Replace $c_{q_{i}}$ with the matrix

$$
\mathbf{G}_{q_{i}}=\left[\begin{array}{llll}
\mathbf{c}_{q_{i}} & \mathbf{c}_{q_{i}}^{(1)} & \ldots & \mathbf{c}_{q_{i}}^{\left(\phi\left(q_{i}\right)-1\right)}
\end{array}\right]_{N \times \phi\left(q_{i}\right)}
$$

where $\mathbf{c}_{\mathbf{q}_{\mathbf{i}}}^{(\mathbf{k})}$ represents circular downshifting by k.

Properties of \mathbf{F}_{N}

- $\mathbf{F}_{N}=\left[\begin{array}{llll}\mathbf{G}_{q_{1}} & \mathbf{G}_{q_{2}} & \ldots & \mathbf{G}_{q_{K}}\end{array}\right]_{N \times N},\left(\sum_{q_{i} \mid N} \phi\left(q_{i}\right)=N.\right)$
- Theorem (Orthogonality): For $i \neq k$, the columns of the submatrices $\mathbf{G}_{\mathbf{q}_{\mathbf{i}}}$ and $\mathbf{G}_{\mathbf{q}_{\mathbf{k}}}$ in the matrix \mathbf{F}_{N} span orthogonal subspaces of \mathbb{C}^{N}.
- Theorem: Any length N sequence can be represented as a linear combination of the form

$$
x(n)=\sum_{q_{i} \mid N} \underbrace{\sum_{l=0}^{\phi\left(q_{i}\right)-1} \beta_{i l} c_{q_{i}}(n-l)}_{x_{q_{i}}(n)}
$$

where q_{i} are divisors of N and $c_{q_{i}}(n)$ is the $q_{i}^{t h}$ Ramanujan sum.

- Even though the columns of $\mathbf{G}_{q_{i}}$ are orthogonal to those of $\mathbf{G}_{q_{k}}$ for $i \neq k$, the $\phi\left(q_{i}\right)$ columns of each $\mathbf{G}_{q_{i}}$ are in general not orthogonal, so $\mathbf{F}_{\mathbf{N}}$ itself is in general not an orthogonal matrix.
- Theorem: \mathbf{F}_{N} is an orthogonal matrix iff $N=2^{m}$.

[^1]
[^0]: P. P. Vaidyanathan, "Ramanujan Sums in the Context of Signal Processing—Part I: Fundamentals," in IEEE Transactions on Signal Processing, vol. 62, no. 16, pp. 4145-4157, Aug.15, 2014.

[^1]: P. P. Vaidyanathan, "Ramanujan Sums in the Context of Signal Processing-Part II: FIR Representations and Applications," in IEEE Transactions on Signal Processing, vol. 62, no. 16, pp. 4158-4172, Aug.15, 2014.

