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Introduction

Millimeter wave frequencies are a promising candidate for 5G
communications due to large available bandwidth

The mmWave frequency ranges from 30GHz to 300GHz

Due to large frequency, the channel gets degraded due to path loss,
penetration loss, fading etc and hence it faces challenge in improving
system capacity and providing good quality of service (QoS) to the
users

To reduce the losses we use beamforming techniques to generate
beamforming vectors

We have simulated a hybrid precoding method from the literature to
generate the RF precoder and baseband precoder to select the
beamformers[1]
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System Model

Consider a multiple input single output (MISO) system,

Baseband
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RF Precoding

The system is consists of a baseband processor, digital-to-analog converter
(DAC), upconverter, S RF chains, M transmit antennas, and K number of
users.
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Notations

The system model is expressed as

y = HFGs + n

Here,
H: channel matrix of the system of size K ×M,
F: RF precoder of size M × S ,
G: baseband precoder of size S × K ,
s: transmitted vector of size K × 1,
n: noise vector of size K × 1,
y: received vector of size K × 1.

Here, M ≥ S ≥ K
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Channel Model

Here, sT = [s1, . . . , sK ] with sk ∼ CN (0, 1), ∀ k ∈ K , {1, 2, . . . ,K}

HH = [h1, . . . ,hK ]. Here, hk is given by

hk =

√
M

NclNray

Ncl∑
mp=1

Nray∑
np=1

αmp ,npa
(
φmp ,np

)
where, aULA (φ) =

√
1

M

[
1, e j

2π
λ
d sin(φ), . . . , e j(M−1) 2π

λ
d sin(φ)

]
λ is the signal wavelength
d is the antenna spacing
φ is the angle of departure (AoD)

n ∼ CN (0, σ2IK) is the AWGN noise vector.
αmp ,np ∼ CN (0, σ2

mp
)
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Sum Rate Expression

Problem of maximizing system sum rate is given as

max
F ,G

K∑
k=1

Rk

s.t. Rk = log (1 + SINRk) ≥ γk , ∀k ∈ K
F ∈ FRF , ‖FG‖2

F ≤ P

SINRk =
|hHk Fgk|

2∑K
l=1,l 6=k |h

H
k Fgl |

2 + σ2
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RF Codebook Design

Some examples of the RF codebooks are

q-bit quantizer Codebook

F(m, n) =
1√
M

e j
π(4(m−1)(n−1)−2N)

2q+1 , ∀m ∈M, ∀n ∈ N

IEEE 802.15.3c Codebook

F(m, n) =
1√
M

e
j π

2
floor

(
4(m−1)(mod((n−1)+ N

4 ,N))
N

)
, ∀m ∈M, ∀n ∈ N

DFT Codebook

F(m, n) =
1√
M

e−
j2π(m−1)(n−1)

M , ∀m ∈M, ∀n ∈ N

Here, M∈ {1, . . . ,M}, N ∈ {1, . . . ,N}
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Contd.

DFT-based Multilevel Codebook [2]

Fm =
{

f
(m)

1 , f
(m)

2 , . . . , f
(m)
M/N

}
=

 1√
N

N∑
p=1

ut(p)e jωmp,
1√
N

2N∑
p=N+1

ut(p)e jωmp, . . . ,

1√
N

M∑
p=M−N+1

ut(p)e jωmp


ut(n) =

1√
M

[
1, e−j

2π
M
ωm(n−M+1

2 ), e−j
2π
M
ωm2(n−M+1

2 ), . . . , e−j
2π
M
ωm(M−1)(n−M+1

2 )
]

ωm ∈
[
− π

M , π
(
1− 1

M

)]
and is selected by minimizing var

(
|uHt (n)f

(m)
k |
)

.
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Beam Sweep Procedure
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Figure: Beam-sweep Procedure
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Virtual Communication System for CSIT

Baseband
Processor

D/A

D/A

D/A

Up-Converter

Up-Converter

Up-Converter

Select no more
than S

antennas to
achieve the
optimal
energy

efficiency

1

n

N

User 1

User k

User K

h
eff

k

h
eff

k
= FHhk = [fH

1
hk : : : fH

n hk : : : fH
N
hk]

1

s

S

Figure: Virtual Multiuser Communication System
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Baseband Precoder Design

Sum rate maximization problem is expressed as

max
G

K∑
k=1

Rk ,

s.t. Rk = log (1 + SINRk) ,

K∑
k=1

‖Fgk‖2
2 ≤ P, ‖g̈‖0 ≤ S ,

where, g̈ = [‖g̃1‖2, . . . , ‖g̃N‖2]T

SINRk =
|hHk Fgk |2∑K

l=1,l 6=k |h
H
k Fgl |2 + σ2
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Contd.

We will introduce some variables ak , bk , ∀k ∈ K, So, the sum rate
maximization problem can be rewritten as

min
{gk ,ak ,bk}

−
K∑

k=1

bk ,

s.t. 1 + ak ≥ ebk , ∀k ∈ K,
SINRk ≥ ak , SINRk ≥ γ̄k , ∀k ∈ K,
K∑

k=1

‖Fgk‖2
2 ≤ P, ‖g̈‖0 ≤ S ,

where γ̄k = eγk − 1
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Rearranging the problem

To overcome noncovex difficulties

min
{gk ,ak ,bk}

−
K∑

k=1

bk + λ‖g̈‖0,

s.t. 1 + ak ≥ ebk , ∀k ∈ K,
K∑

k=1

‖Fgk‖2
2 ≤ P,

SINRk ≥ ak , SINRk ≥ γ̄k , ∀k ∈ K,

Here, λ control the sparsity of solution, i.e., the larger λ the solution is
more sparse.
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Approximate Problem

Problem can be further approximated as

min
{gk ,ak ,bk}

−
K∑

k=1

bk + λ‖G‖2
1,∞,

s.t. 1 + ak ≥ ebk , ∀k ∈ K,
K∑

k=1

‖Fgk‖2
2 ≤ P,

SINRk ≥ ak , SINRk ≥ γ̄k , ∀k ∈ K,

where ‖G‖1,∞ =
∑N

n=1 maxk |gk(n)| is the l1,∞-norm of matrix G.
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Contd.

Here, ‖G‖2
1,∞ can be rewritten as

‖G‖2
1,∞ =

(
N∑

n=1

max
k
|gk(n)|

)2

,

=
N∑

n=1

N∑
m=1

((
max
k
|gk(n)|

)(
max
k
|gk(m)|

))
,

=
N∑

n=1

N∑
m=1

max
i ,j∈{1,...,K}

|Xi ,j(n,m)|,

where Xi ,j = gig
H
j , ∀i , j . So, Xi ,i = gig

H
i , therefore Xi ,i � 0 and

rank(Xi ,i ) = 1, ∀i .
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Approximate Problem

Problem can be further approximated as

min
{Xi,j ,ak ,bk}

−
K∑

k=1

bk + λ‖G‖2
1,∞,

s.t. 1 + ak ≥ ebk , ∀k ∈ K,
K∑

k=1

tr
(
F̃Xk,k

)
≤ P,

SINRk ≥ ak , SINRk ≥ γ̄k , ∀k ∈ K, Xk,k � 0, ∀k ∈ K,
rank (Xi ,j) = 1, ∀i , j ,

where F̃ = FHF, and

SINRk =
tr (HkXk,k)∑K

l=1,l 6=k tr (HkXl ,l) + σ2

where Hk = FHhkh
H
k F, ∀k ∈ K.
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Further Approximation

Let Xk = Xk,k , ∀k ∈ K and Z(n,m) = maxk∈K |Xk(n,m)|, ∀k ∈ K.

We will drop the nonconvex constraints rank(Xk) = 1.

min
{Xk ,ak ,bk},Z

−
K∑

k=1

bk + λtr (1N×NZ)

s.t. 1 + ak ≥ ebk , ∀k ∈ K,
K∑

k=1

tr
(
F̃Xk

)
≤ P,

SINRk ≥ ak , SINRk ≥ γ̄k , ∀k ∈ K,
Xk � 0, Z ≥ |Xk |, ∀k ∈ K,
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Contd.

We will introduce some new variables ψk .φk , ∀k ∈ K. The problem can be
rewritten as

min
{Xk ,ak ,bk ,ψk ,φk},Z

−
K∑

k=1

bk + λtr (1N×NZ) ,

s.t. ψ2
k ≤ tr (HkXk) , Xk � 0, 1 + ak ≥ ebk ,∀k ∈ K
K∑

l=1,l 6=k

tr (HkXl ,l) + σ2 ≤ φk ,∀k ∈ K,
K∑

k=1

tr
(
F̃Xk

)
≤ P,

K∑
l=1,l 6=k

γ̄ktr (HkXl ,l) + γ̄kσ
2 ≤ tr (HkXk) ,

ψ2
k

φk
≥ ak , ∀K ∈ K,

[
Z(n,m)−<(Xk(n,m) =(Xk(n,m))

=(Xk(n,m)) Z(n,m) + <(Xk(n,m)

]
� 0, ∀k ∈ K,m, n.
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Final Convex Problem

The constraint
ψ2
k
φk
≥ ak is still nonconvex. So, the constraint can be

approximated as

ψ2
k

φk
≥ Φ

(I )
k (ψk , φk) , 2

ψ
(I )
k

φ
(I )
k

ψk −

(
ψ

(I )
k

φ
(I )
k

)2

φk , ∀k ∈ K,

Now, we will solve the series of convex optimization problem. Here, I

denotes the I th iteration. (ψ
(I )
k , φ

(I )
k )← (ψk , φk) at the I th iteration.

Φ
(I )
k (ψk , φk) is determined at the I th iteration.
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Contd.

So, the approximate value of convex problem at the (I + 1)th iteration can
be

min
{Xk ,ak ,bk ,ψk ,φk}Z

−
K∑

k=1

bk + λtr(1N×NZ),

s.t. ψ2
k ≤ tr (HkXk) , Xk � 0, 1 + ak ≥ ebk , ∀k ∈ K,
K∑

l=1,l 6=k

tr (HkXl) + σ2 ≤ φk , ∀k ∈ K,
K∑

k=1

tr
(
F̃Xk

)
≤ P,

K∑
l=1,l 6=k

γ̄ktr (HkXl) + γ̄kσ
2 ≤ tr (HkXk) ,

Φ
(I )
k (ψk , φk) ≥ ak , ∀k ∈ K,[
Z(n,m)−<(Xk(n,m) =(Xk(n,m))

=(Xk(n,m)) Z(n,m) + <(Xk(n,m)

]
� 0, ∀k ∈ K,m, n.
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Solution of the Convex Problem

Algorithm for optimal solution

Fix a value of λ. Let the value of our objective function is τ and τ (I )is the
value of τ at the I th iteration.

1: Let I = 0, take some initial points as Γ(I ) and get τ (I ).
2: Solve the convex problem with Γ(I ), and obtain new values of the Γ

and τ .
3: If |τ − τ (I )| ≤ ζ, then τ, Γ will be our optimal solution, otherwise

Γ(I ) ← Γ, τ (I ) ← τ and go to step 2.
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Selection of λ

Let Lλ be the number of nonzero diagonal entries in Z.

Algorithm for choosing λ

1: Generate initial points λL, λU and compute τ̃T =
∑K

k=1 bk and denote
ΞT as the temoprary solution of the convex problem. Let flag = 1

2: while flag do

3: Let λ = λL+λU
2 .

4: Solve the convex problem with λ, then obtain the solution of it after
iteration and τ̃λ

5: If Lλ > S , let λL = λ, otherwise, let λU = λ.

6: If |τ̃λ − τ̃T | ≤ ζ and Lλ ≤ S , then let flag=0 and output the solution
of convex problem. Otherwise, ΞT ← Ξλ, τ̃T ← τ̃λ

7: end while
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Refining Solution

F̂ is obtained by choosing Lλ codewords from RF codebook.

h̄k = F̂
H
hk is our effective channel.

Now we will refine our solution

max
{ḡk}

K∑
k=1

R̄k ,

s.t. SINRk ≥ γ̄k ,∀k ∈ K,
K∑

k=1

‖F̂ ḡk‖2
2 ≤ P,

where R̄k = log
(
1 + SINRk

)
, and SINRk is given by

SINRk ,
‖h̄Hk ḡk‖2

2∑K
l=1,l 6=K ‖h̄

H
k ḡl‖2

2 + σ2
.
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Rearranging the Problem

We introduce variable āk , b̄k , φ̄k , the problem can be reformulated as

max
{ḡk ,āk ,b̄k ,φ̄k}

K∑
k=1

b̄k ,

s.t. 1 + āk ≥ e b̄k , ∀k ∈ K,
K∑

k=1

‖F̂ ḡk‖2
2 ≤ P

‖h̄Hk ḡk‖2
2

φ̄k
≥ γ̄k , ∀

‖h̄Hk ḡk‖2
2

φ̄k
≥ āk , ∀k ∈ K,

K∑
l=1,l 6=K

‖h̄Hk ḡl‖2
2 + σ2 ≤ φ̄k , ∀k ∈ K,
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Final Sum Rate Maximization Problem

As the problem is nonconvex, we can approximate the constraint by

‖h̄H
k ḡk‖2

2

φ̄k
≥ Φ̄

(I )
k

(
ḡk φ̄k

)
,

2<
((

ḡ
(I )
k

)H
h̄k h̄

H
k ḡk

)
φ̄

(I )
k

−

(
‖h̄H

k ḡ
(I )
k ‖2

φ̄
(I )
k

)2

φ̄k ,

∀k ∈ K,

Here I denotes the I th iteration. We can write

Φ̄
(I )
k

(
ḡk , φ̄k

)
≥ γ̄k , Φ̄

(I )
k

(
ḡk , φ̄k

)
≥ āk , ∀k ∈ K.
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Contd.

We solve the following convex problem to obtain the optimal solution

max
{ḡk ,āk ,b̄k ,φ̄k}

K∑
k=1

b̄k ,

s.t. 1 + āk ≥ e b̄k , ∀k ∈ K,
K∑

k=1

‖F̂ ḡk‖2
2 ≤ P

K∑
l=1,l 6=K

‖h̄Hk ḡl‖2
2 + σ2 ≤ φ̄k , ∀k ∈ K,

Φ̄
(I )
k

(
ḡk , φ̄k

)
≥ γ̄k , Φ̄

(I )
k

(
ḡk , φ̄k

)
≥ āk , ∀k ∈ K.
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Solution of the Sum Rate Maximization Problem

Algorithm for optimal solution

Let the value of our objective function is τ̄ and τ̄ (I )is the value of τ̄ at the
I th iteration.

1: Let I = 0, take some initial points as Γ̄(I ) and get τ̄ (I ).
2: Solve the convex problem with Γ̄(I ), and obtain new values of the Γ̄

and τ̄ .
3: If |τ̄ − τ̄ (I )| ≤ ζ, then τ̄ , Γ̄ will be our optimal solution, otherwise

Γ̄(I ) ← Γ̄, τ̄ (I ) ← τ̄ and go to step 2.

Vaibhav Baranwal (IISc) Main Presentation 17th Mar, 2018 27 / 32



Simulation Result
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Future Work

In the future work we will optimize the codebook to get the best RF
codebook among different codebooks.

Also, we will check the robustness of the system when their is analog
errors in RF precoder.
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