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MBM: Media Based Modulation

» Varying the end to end channel
based on the input is called
Media Based Modulation. i M, mirrors

» Carrier is modulated after § 'L[ I)-— — [ V2 II
leaving the transmitter by e -
changing RF properties of the | |
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» Small perturbation near the tx in rm bit for MBM, total rs + rn,

a rich scattering environment can be transmitted by combining
results an independent SBM and MBM, and receiver
end-to-end channel. RF mirrors will receive one of the points

are used for creating from constellation of 2(s*m)

perturbations. points.



Advantages of MBM

> Increasing the spectral efficiency without increasing energy unlike SBM,
where increasing rs results exponential increase in energy.

» Deep fades do not have persisting effect because of Constellation
diversity. As constellation size increases, this converts static multi-path
fading channel into non-fading AWGN.

> In a 1xD SIMO-MBM system received vector spans in D receive
dimension unlike SIMO-SBM which spans in single complex dimension,
which is equivalent to SIMO-SBM with D times bandwidth.

> Possibility of choosing subset of channel similar to multi user diversity
gain in scheduling.

Disadvantages of MBM

» Random arrangements of constellation points and all points are used with
equal probability. While in SBM constellation can be used with non
uniform probability to realize shaping gain.

» MBM is Linear Time variant, can trouble the traditional channel
equalization techniques

» Signal in single dimension at the input is spread across the multiple
dimension at output.



GSM-MBM:

> MBM is combined with generalized spatial modulation(GSM) is called
GSM-MBM

> A subset of N, tx antennas are active out of N; rf chains at any time, a
constellation symbol from signal set of size M is sent on each active
chain, and N,f mirrors per antenna are used for perturbing thje
environment near the active antennas.

> A total of log (") + NaN,s + n,log)' bits are sent per channel use(bpcu)
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Fig. 2. GSM-MBM transmitter.



system model:
y=®x+w
observation vector, y € CY,
vector to be estimated, x € CV
w is AWGN noise vector i.e. ~ N(0,?ly).

» In GSM-MBM system model, M = N, is number of receive antennas,
N = N; * 2Nt \where N; is no.of transmit antennas, N,r is no.of rf mirrors
per antenna.

Goal: Estimate the unknown vector x

> In GSM-MBM model only N, number of rf chains are active, and
corresponding to each active antenna, one mirror pattern is activated out
of 2M* mirror patterns.

» The vector x has inherent structured sparsity.



The vector x is block sparse with only N, number of active blocks and
within each active block of size 2V only one mirror pattern is active at
anytime. Following figure depicts structure of x

active block with one active element

inactive block

Figure 1: Block sparse vector with one active alement in each active block



» The above system can be modeled as

y=®¢DEz+w
where D = diag(d) ® I, d = [d1, d», ..., ds]",
E= diag(e),e = [611, €12, ..., eB/\/]]T,
z= [21172127 . 7ZB/\/I]T,Z/J' ~ N(O,’Y[)

> Structured sparsity is controlled by variables d;,e; i € [1, B], j € [1, M]
having prior distributions as follows:

) exp {—a (Na — izB:ld,)Z}7

dconst

B
plen,....esu/d) =] p(en,....em/d) =[]
i=1

i=1



Problem formulation:

dvap = arg dmax Inp(dly, ,e,z;0°)
=arg dmax Inp(y|d, e, z; 0°)p(d)
=arg dmax Inp(y|d, e, z; 02) + Inp(d)
where,
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@uap = arg max Inp(ely,d,z; 0%)
= arg max Inp(y|d, e,z o%)p(e/d)p(d)
= arg max Inp(y|d, e, z;0°) + Inp(e/d) + Inp(d)
d

where,
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euap = arg max —f(e) (3)

= arg min f (e) (4)
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Zuap = arg max Inp(zly,d,e; o%)
= arg max Inp(y|d, e, z; 0%)p(z)

= arg max Inp(y|d,e, z;6°) + Inp(z)
d



Solving the optimization problems:
Steepest Descent method is used to solve optimization problems of (2) and (4).
Updating d using Steepest descent method as follows:

diy1 =d: — pg a(d)|d d;
%L‘:dr _ <I>H(¢DE22— y)(Ez)" (i ) (D)
Step size p can calculated by setting aaffz) la=d,.; =0
o e o o (s o (- ) (£ 210, )
td = , = =

(¢(dfd)|d dt)Ez) ¢(%(;)|d:dr)Ez + 2 ( B or(e)

o2 ad; |di:dfz
=1

N——



Updating e using Steepest descent method as follows:
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Estimation of z using Type-Il ML:

» We assume a z has Gaussian distribution with mean zero and variance I',
where I' = diag(y1,...,vn)

» Given d, e the likelihood function of z is also a Gaussian with distribution
~ N(®DEz, o%ly)



» The posterior distribution p (z\y,d,e; 02) is multivariate Gaussian with
mean p, and covariance ¥
where
pz = o 200 (PDE)"y

To=r"1—T"!(¢DE)" (a2|N + ®DEr? (¢DE)”) ' oDEr !
» Using Type-ll ML estimator, the update for ' can be expressed as
[ = |pz|* + diag(%o)
Iterative Bayesian Algorithm:
» Initialize z with LS square solution
> Initialize d and e from mathbf zj,;

> while |z: — z;—1| < €
Update d using steepest descent
Update e using steepest descent
Update z using EM-SBL
threshold d, e



Simulation results:

NMSE

Success rate: NMSE <1074
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Future work
» penalty for forcing entries of d, e to either 0 or 1

» Handling of concave part in objective function which results from penalty
added for forcing d;, e; € {0,1}



