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Motivation

To solve communication and information theoretic problems in wireless

communications.

Unified framework for the performance analysis of multiple antenna systems

based on matrix-monotone functions.
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Matrix monotonicity

Set of all positive semidefinite matrices of size n× n defined as Hn

Löwner ordering: A ≤ B means B−A is positive semidefinite.

Let A ⊂ Hn. A function φ : A → Hn is matrix-increasing of order n on A if

A ≤ B =⇒ φ(A) ≤ φ(B)

for A, B ∈ A. The function is strictly matrix-increasing of order n on A if

A < B =⇒ φ(A) < φ(B)

If a function is matrix-increasing for all orders n ≥ 1, it is called

matrix-increasing or also matrix-monotone.
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Example

On the set of positive definite matrices, the function φ(A) = A−1 is strictly

decreasing.

Proof

Let Q1 > Q2 > 0

Define g(t) = (tQ1 + (1− t)Q2)
−1 = Q(t)−1

It suffices to prove that g(t) is strictly decreasing in 0 ≤ t ≤ 1.

Q(t)Q(t)−1 = I

∂Q(t)

∂t
Q(t)−1 +Q(t)

∂Q(t)−1

∂t
= 0

=⇒
∂Q(t)−1

∂t
= −Q(t)−1(Q1 −Q2)Q(t)−1

< 0.
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Matrix Convexity

Let A ⊂ Hn. A function φ : A → Hn is matrix-convex of order n if

φ(αA+ ᾱB) ≤ αφ(A) + ᾱφ(B) ∀ α ∈ [0, 1] and A,B ∈ A.

A function is matrix-convex if it is matrix-convex for all orders n ≥ 1.

A nonnegative continuous function on [0,∞) is operator monotone if and only if
it is operator concave.

However, not every matrix-convex function is necessarily matrix-monotone.

φ(A) = A2 is matrix-convex but not matrix-monotone
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Proposition:

Let φ be a function defined on a convex set A of m× k matrices, taking values
in Hn for some n. If A is open and g is twice differentiable for all A,B ∈ A the

following are equivalent:

φ is matrix-convex on A.

For all fixed A and B in A, the function g(α) = φ(αA + ᾱB) is convex in

α ∈ [0, 1] in the sense that ηg(α) + η̄g(β)− g(ηα + η̄β) is positive semidefinite for

all α, β, η ∈ [0, 1].

For all fixed A,B ∈ A, d2g(α)
dα2

is positive semidefinite for 0 < α < 1.

Example:

f(X) = log(I+X) is matrix-concave

d2 log(I+ αX)

dα2
= −X[I+ αX]−2

X ≤ 0

Corollary:

Every matrix-monotone (matrix-convex) function is monotonic (convex) whereas

not every monotonic (convex) function is matrix monotone (matrix-convex).
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Matrix-monotone functions are matrix-concave, concave, and monotone.
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Frechet Derivative

Corresponding to the first and second derivatives of scalar functions, there exists

a derivative of a matrix valued function φ.

The map φ is called (Frechet) differentiable at A if there exists a linear

transformation Dφ(A) on the space of positive semidefinite matrices such that

for all H

‖φ(A+H)− φ(A)−Dφ(A)(H)‖ = o(‖H‖)

A direction H is needed to define the derivative.
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Example

The first derivative of φ(A) = Ap in direction of B is given by

Dφ(A)(B) =

p
∑

k=1

A
k−1

BA
p−k

Proof:

Let φ(ǫ) = (A+ ǫB)p.

Using product rule,

dφ(ǫ)

dǫ
=

[
d

dǫ
(A+ ǫB)

]

(A+ ǫB)p−1 + (A+ ǫB)

[
d

dǫ
(A+ ǫB)

]

(A+ ǫB)p−2

+ . . .+ (A+ ǫB)p−1

[
d

dǫ
(A+ ǫB)

]

=

p
∑

k=1

(A+ ǫB)k−1

[
d

dǫ
(A+ ǫB)

]

(A+ ǫB)p−k

Evaluating the differential at ǫ = 0 gives the solution.
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Some more examples:

φ(A) = A
2

Dφ(A)(B) = AB+BA

φ(A) = A
−1

Dφ(A)(B) = −A
−1

BA
−1

φ(A) = A
H
A : Dφ(A)(B) = A

H
B+B

H
A

Properties

Linear.

Composition of two differentiable maps is differentiable.
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First Divided Difference:

Closely related to the Frechet derivative.

Used to characterize the class of matrix-monotone functions.

Let I be an open interval. Let φ be a continuously differentiable function on I.

Then, we denote by φ[1] the function on I× I defined as

φ
[1](λ1, λ2) =

φ(λ1)− φ(λ2)

λ1 − λ2
, if λ1 6= λ2

φ
[1](λ1, λ1) = φ

′(λ1).

φ[1](λ1, λ2) is called the first divided difference of φ at (λ1, λ2).
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Matrix of first divided differences

The matrix of first divided differences φ[1](A) for p.s.d. A = UΛUH is defined

as

φ
[1](A) = Uφ

[1](Λ)UH
.

Applying the diagonal matrix Λ with entries λ1, . . . , λn, the function φ[1] is

defined as an n× n matrix with

[

φ
[1](Λ)

]

j,k
= φ

[1](λj , λk).

Connection between the matrix of first divided differences and Frechet derivative

If φ is a polynomial function and A is p.s.d., then

Dφ(A)(H) = φ
[1](A) ◦ H.

Sai Thoota (SPC Lab) Matrix Monotone Functions December 14, 2019 12 / 20



Relation between φ[1] and derivative φ′ of the scalar function φ(t):

For any matrix-monotone function φ and Hermitian matrices A and D, the

following identity holds

tr
(

φ
[1](A) ◦D

)

= tr
(
φ
′(A) ·D

)
.

Proof:

tr
(

φ
[1](A) ◦D

)

=
d

dǫ





ǫ=0
tr φ(A+ ǫD) =

d

dǫ





ǫ=0
tr φ(UΛU

H + ǫD)

= tr

(

U

[
d

dǫ





ǫ=0
φ(Λ+ ǫU

H
DU)

]

U
H

)

= tr
(

UDφ(Λ)(UH
DU)UH

)

= tr



φ
[1] ◦UH

DU
︸ ︷︷ ︸

Z





= tr

(
n∑

k=1

[

φ
[1](Λ)

]

k,k
Zk,k

)

= tr

(
n∑

k=1

[
φ
′(Λ)

]

k,k
Zk,k

)

= tr(φ′(Λ)UH
DU) = tr(φ′(A) ·D)
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Basic Characterizations

Representation for Löwner’s theory:

Every matrix-monotone function φ can be expressed as

φ(t) = a+ bt+

∫
∞

0

st

s+ t
dµ(s)

with a positive measure µ ∈ [0,∞) and real constants a, b ≥ 0.

Every matrix-convex function ψ can be represented as

ψ(t) = a+ bt+ ct
2 +

∫
∞

0

st2

s+ t
dµ(s)

with a positive measure µ ∈ [0,∞) and real constants a, b, c ≥ 0.

Every matrix monotone function can be represented by two scalars and a

measure as MM = (a, b, µ(s)).

Matrix valued function can be represented as

φ(A) = aI+ bA+

∫
∞

0

sA(sI+A)−1
dµ(s)
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Examples

MM = (0, 0, 1
s2
u(s− 1)) with step function u(s)

φ(t) =

∫
∞

1

st

s+ t

1

s2
ds = log(1 + t).

MM = (−1, 0, 1
s3
u(s− 1)) leads to

φ(t) = −1 +

∫
∞

1

st

s+ t

1

s3
ds = −

log(1 + t)

t
.

MM = (0, 0, sin(rπ)
π

sr−2) with 0 < r ≤ 1 yields

φ(t) =
sin(rπ)

π

∫
∞

0

st

s+ t
s
r−2

ds = t
r
.
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Derivative of matrix-monotone function:

The first derivative of an arbitrary matrix-monotone function at A in direction

B is given by

Dφ(A)(B) = bB+

∫
∞

0

s
2[sI+A]−1

B[sI+A]−1
dµ(s).

Proof:

The directional derivative is defined as Dφ(A)(B) = ∂φ(A+ǫB)
∂ǫ

∣
∣
∣
ǫ=0

φ(A+ ǫB) = aI+ b(A+ ǫB) +

∫
∞

0

s(A+ ǫB)(sI+A+ ǫB)−1
dµ(s)

∂φ(A+ ǫB)

∂ǫ

∣
∣
∣
ǫ=0

= bB+

∫
∞

0

[I−A[sI+A]−1]sB[sI+A]−1
dµ(s)

By simplifying, we get the result.
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Further Properties1

For p.s.d. matrices A and B with eigenvalues α1 ≥ α2 ≥ . . . ≥ αn and

β1 ≥ β2 ≥ . . . ≥ βn, it holds

min
π

trφ(diag(α1, . . . , αn)diag(βπ1
, . . . , βπn

)) ≤ trφ(B
1

2AB
1

2 )

≤ max
π

trφ(diag(α1, . . . , αn)diag(βπ1
, . . . , βπn

))

with permutation π.

1Matrix norms covered in Matrix Theory course
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Contraction:

A matrix C is a contraction if CHC ≤ I, or equivalently, ‖C‖∞ ≤ 1.

Let φ be a matrix-monotone function on [0,∞), ψ a matrix convex function on

[0,∞) with ψ(0) ≤ 0. Then for every contraction C and every A ≥ 0,

φ(CH
AC) ≥ C

H
φ(A)C and ψ(CH

AC) ≤ C
H
ψ(A)C.

Connection:

A binary operation σ on the class of positive definite matrices (A,B) → AσB, is

a connection if the following requirements are fulfilled:

A ≤ C and B ≤ D imply AσB ≤ CσD.

C(AσB)C ≤ (CAC)σ(CBC).

If a series An converges to A and a series Bn converges to B, respectively, then

the series (AnσBn) converges to AσB.
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THANK YOU!
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