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Introduction

Evaluation of posterior distribution of latent variables given the observed data is a central
task in statistical inference

Computationally intractable due to the integrals over the latent variables

Approximation techniques
Stochastic: Sampling methods like MCMC
Computationally demanding
Deterministic: Variational inference, Expectation propagation
Approximate solutions but faster

Variational inference

Expectation propagation

(Sai Subramanyam Thoota, ECE, IISc) An Introduction to Approximate Inference with Applications to Massive MIMO Communication SystemsSeptember 7, 2019 3 / 18



Variational Bayes

Consider a Bayesian model
Observations Z = {z1, . . . , zN}
Latent variables X = {x1, . . . , xN}

Goal is to find an approximate posterior distribution p(X|Z) and the model evidence p(Z)
Exact computations are computationally intractable

ln p(Z) = L(q) + KL(q‖p)

where

L(q) ,
∫

q(X) ln

{

p(Z,X)

q(X)

}

dX

KL(q‖p) = −
∫

q(X) ln

{

p(X|Z)
q(X)

}

dX ≥ 0

Need to find a distribution q(X) which will maximize the evidence lower bound (ELBO) L(q)
Maximum occurs when q(X) = p(X|Z) =⇒ computational intractability
Impose structure on q and minimize the KL divergence
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Factorized distributions for q
Approximation framework developed in physics called mean field theory

q(X) =
M
∏

i=1

qi (Xi )

L(q) =
∫

∏

i

qi

{

ln p(Z,X)−
∑

i

ln qi

}

dX

=

∫

qj

∫

ln p(Z,X)
∏

i 6=j

qidXidXj −
∫

qj ln qjdXj −
∑

i 6=j

∫

qi ln qidXi

=

∫

qj ln p̃(Z,Xj )dXj −
∫

qj ln qjdXj + const.

= −KL
(

qj‖p̃(Z,Xj)
)

+ const.

where

ln p̃(Z,Xj ) , Ei 6=j [ln p(Z,X)] + const.

To maximize L(q), need to minimize the KL divergence in (1)
Minimum occurs when qj (Xj ) = p̃(Z,Xj )
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Optimal qj is given by

q⋆j (Xj ) = const × exp
(

Ei 6=j [ln p(Z,X)]
)

=
exp

(

Ei 6=j [ln p(Z,X)]
)

∫

exp
(

Ei 6=j [ln p(Z,X)]
)

dXj

Can obtain the parameters of the distribution q⋆j (Zj ) by inspection

Fix qi 6=j and obtain the parameters of qj and iterate for all j
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Expectation Propagation

The Exponential family

p(x|η) = h(x)g(η) exp
{

ηTu(x)
}

where η is the natural parameter vector

Maximum likelihood and sufficient statistics:

−∇ ln g(ηML) =
1

N

N
∑

n=1

u(xn)

Differentiating
∫

p(x|η)dx = 1 gives

−∇ ln g(η) = E{u(x)}
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Expectation Propagation

To obtain an approximate posterior by minimizing KL(p ‖ q) instead of KL(q ‖ p)

KL(p ‖ q) = − ln g(η)− ηT
Ep(z) [u(z)] + const

Minimum occurs when

Eq(z) [u(z)] = Ep(z) [u(z)]

which is called moment matching

Joint distribution of data D and hidden variables θ

p(D,θ) =
∏

i

fi (θ)

Approximation to the posterior distribution (from an exponential family)

q(θ) =
1

Z

∏

i

f̃i (θ)

EP proceeds in a similar fashion as variational Bayes
Initialize the factors and cycle through them refining one at a time
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To obtain f̃j(θ) by ensuring that the product

qnew(θ) ∝ f̃j(θ)
∏

i 6=j

f̃i (θ)

is as close as possible to fj(θ)
∏

i 6=j f̃i (θ)

Remove the factor f̃j(θ) from the current approximation

q\j (θ) =
q(θ)

f̃j (θ)

Combine it with fj(θ) to give a distribution 1
Zj
fj(θ)q

\j (θ)

Find f̃j (θ) by minimizing

KL

(

fj(θ)q
\j (θ)

Zj

w

w

w
qnew(θ)

)

Since q is from an exponential family, the minimization can be done using moment matching

f̃j(θ) = K
qnew(θ)

q\j (θ)

Disadvantage: No convergence guarantee in general. For exponential family, it may converge
to a stationary point
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Joint Channel Estimation and Data Detection for Uplink Massive MIMO
Systems with Low Resolution ADCs

Motivation

Large number of antennas results in an increased hardware complexity and circuit power
consumption.

Power consumption of ADCs increases exponentially with respect to the number of bits per sample

Non-linearity due to quantization necessitates novel signal processing algorithms

Most of the existing literature on low resolution ADCs assume perfect CSI at the receiver,
which is not realistic.

Goal

Joint channel estimation and data detection in the uplink of a coded massive MIMO wireless
communication system with low resolution ADCs

Contributions

Joint channel estimation and data detection as a statistical inference problem in a
probabilistic graphical model.

MIMO channel, data symbols and unquantized outputs as latent variables whose marginal
distributions are inferred

Variational Bayesian inference to compute the marginal distributions of the channel and data

(Sai Subramanyam Thoota, ECE, IISc) An Introduction to Approximate Inference with Applications to Massive MIMO Communication SystemsSeptember 7, 2019 10 / 18



Received Signal

Yp = Q (Zp) = Q (HXp +Wp) , (1)

Yd = Q (Zd ) = Q (HXd +Wd ) , (2)

Bayesian Network Model

Xd

ZdHZp

Xp

Yp Yd

σ2
w

β
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Quantized Variational Bayesian Joint Channel Estimation and Data
Detection

Fully factorized approximation of the posterior distribution is shown below:

p
(

Zp,Zd ,Xd ,H|Yp,Yd ,Xp;β, σ
2
w

)

≈ q (Zp) q (Zd ) q (Xd ) q (H) , (3)

where

q (H) =

NRX
∏

n=1

K
∏

k=1

q (hnk ) , q (Xd ) =
K
∏

k=1

τd
∏

t=1

q
(

xd,kt
)

(4)

q (Zd ) =

NRX
∏

n=1

τd
∏

t=1

q
(

zd,nt
)

, q (Zp) =

NRX
∏

n=1

τp
∏

t=1

q (zp,nt) . (5)
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Conditional probability distributions of the observations and the latent variables are given as

p
(

Zp|Xp,H; σ2
w

)

∝ exp

(

− 1

σ2
w

τp
∑

t=1

‖zp,t − Hxp,t‖2
)

, (6)

p
(

Zd |Xd ,H; σ2
w

)

∝ exp

(

− 1

σ2
w

τd
∑

t=1

w

wzd,t − Hxd,t
w

w

2

)

, (7)

p (H|β) ∝ exp

(

−
K
∑

k=1

1

βk

‖hk‖2
)

, (8)

p (Yd |Zd) = 1

(

Zd ∈ [Z
(lo)
d

,Z
(hi)
d

]
)

, (9)

p (Yp|Zp) = 1

(

Zp ∈ [Z
(lo)
p ,Z

(hi)
p ]
)

, (10)
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Computation of q(hnk ):

ln q (hnk ) ∝
〈

ln p
(

Zp|Xp,H;σ2
w

)

+ ln p
(

Zd |Xd ,H;σ2
w

)

+ ln p (H|β)
〉

, (11)

∝ − 1

σ2
w

{(

τp
∑

t=1

|xp,kt |2 +
τd
∑

t=1

〈

|xd,kt |2
〉

+
σ2
w

βk

)

|hnk |2

− 2ℜ
((

τp
∑

t=1

[

〈zp,nt〉∗ xp,kt − xp,kt

K
∑

k′=1
k′ 6=k

x∗p,k′t 〈hnk′ 〉
∗
]

+

τd
∑

t=1

[

〈

zd,nt
〉∗ 〈

xd,kt
〉

−
〈

xd,kt
〉

K
∑

k′=1
k′ 6=k

〈

xd,k′t
〉∗ 〈hnk′ 〉∗

])

hnk

)}

(12)

The structure of (12) resembles that of a complex normal distribution
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Computation of q(xd,kt):

q(xd,kt = s) =
exp

(

− 1
σ2
w
f (s)

)

∑

s′ exp
(

− 1
σ2
w
f (s′)

) , (13)

where s belongs to a symbol from the M−QAM, and

f (s) =
〈

‖hk‖2
〉

|s|2

+ 2ℜ
[(

K
∑

k′=1
k′ 6=k

〈

hk′
〉H〈

hk
〉〈

xd,k′t
〉∗ −

〈

zd,t
〉H〈

hk
〉

)

s
]

.

Follows a Boltzmann distribution
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Computation of q(zd,t) and q(zp,t):

ln q
(

zd,t
)

∝
〈

ln1
(

zd,t ∈ [z
(lo)
d,t , z

(hi)
d,t ]
)

− 1

σ2
w

w

wzd,t − Hxd,t
w

w

2
〉

(14)

The structure in (14) is that of a truncated complex normal distribution with mean given
below.

〈

zd,t
〉

= µzd,t
+

φ

(

z
(lo)
d,t

−µzd,t

σw/
√
2

)

− φ

(

z
(hi)
d,t

−µzd,t

σw/
√

2

)

Φ

(

z
(hi)
d,t

−µzd,t

σw/
√
2

)

−Φ

(

z
(lo)
d,t

−µzd,t

σw/
√

2

)

σw√
2
,
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Flow Diagram

Input: Yp,Yd ,Xp,β, σ
2
w

Initialize
〈

zd,t
〉

, 〈zp,t〉 , xd,kt ,∀k, t

Compute 〈hnk 〉 ∀n, k

Compute qxd,kt ,
〈

xd,kt
〉

,
〈

|xd,kt |2
〉

∀k, t

Compute 〈zp,t〉 ,
〈

zd,t
〉

∀t

Converged?

Output qxd,kt ∀k, t, 〈hnk 〉 ∀n, k

No

Yes

(Sai Subramanyam Thoota, ECE, IISc) An Introduction to Approximate Inference with Applications to Massive MIMO Communication SystemsSeptember 7, 2019 17 / 18



THANK YOU!
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