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@ Introduction

© Maximum hand-off control and sparsity
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Hands-off control

@ A hands-off control is defined as a control that has a short support
per unit time.

@ The maximum hands-off control is the minimum support (or sparsest)
per unit time among all controls that achieve control objectives.
@ The energy (or L2 -norm) of a control signal can be minimized to

prevent engine overheating or to reduce transmission cost by means of
a standard LQ (linear quadratic) control problem.

@ The minimum fuel control in which the total expenditure of fuel is
minimized with the L! norm of the control.



Motivation

@ In some situations, the control effort can be dramatically reduced by
holding the control value exactly zero over a time interval. We call
such control a hands-off control.

@ A motivation for hands-off control is a stop-start system in
automobiles. It is a hands-off control; it automatically shuts down the
engine to avoid it idling for long periods of time.

@ This strategy is also used in electric/hybrid vehicles, the internal
combustion engine is stopped when the vehicle is at a stop or the
speed is lower than a preset threshold, and the electric motor is
alternatively used.



Usefulness

@ We can reduce CO or CO2 emissions as well as fuel consumption.
Hands-off control also has potential for solving environmental
problems.

@ In railway vehicles, hands-off control, called coasting, is used to
reduce energy consumption.

@ Hands-off control is desirable for networked and embedded systems
since the communication channel is not used during a period of
zero-valued control. This property is advantageous in particular for
wireless communications and networked control systems.
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Objective

@ For finite horizon continuous-time control, it is to show the
equivalence between the maximum hands-off control and L! -optimal
control under a uniqueness assumption called normality.

@ This result rationalizes the use of L' optimality in computing a
maximum hands-off control.

@ The same result is obtained for discrete-time hands-off control and an
L /L2-optimal control to obtain a smooth hands-off control.
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Sparsity

For a continuous-time signal u(t) over a time interval [0, T], we
define its LP norm with p € [1,00) by

full = ' |u(t)|f’dt)’i W

LP[O, T] = {u(t) : |lullp < oo}

supp(u) = {t € [0, T] : u(t) = 0}
llullo :== my(supp(u)), where my is the Lebesgue measure on R.

The L% norm is not a norm since it fails to satisfy the positive
homogeneity property, that is, for any non-zero scalar « such that
o] # 1, we have [laullo = [|ullo # |allluflo, Vu# 0.

The notation || - ||o may be however justified from the fact that if
u € L1[0, T], then |jul|, < oo for any p € (0,1) and

limp—o ||ul|> = |lullo- which can be proved by using Lebesgues
monotone convergence theorem.



Maximum hand-off control problem

Definition
Sparsity Rate: For a measurable function u on [0, T], T > 0, the sparsity
rate is defined by

1

Rr(u) = =|lullo. (2)

@ For any measurable function u, 0 < Ry(u) < 1. if Rr(u) << 1, then
we say that u is sparse.

@ The control objective is, roughly speaking, to design a control u
which is as sparse as possible, whilst satisfying performance criteria.



Problem formulation

To formulate the control problem, we consider nonlinear multi-input plant
models of the form

d);'(tt) = f(x(t)) + ;g;(x(t))w(t)a telo, 7] 3)

where
e x(t) € R" is the state,
@ u1,...,Un are the scalar control inputs,

e f and g; are functions on R” . We assume that f(x), gi(x), and their
Jacobians f'(x), g/(x) are continuous.

@ We use the vector representation v := [u1,. .., Un].



Admissible

@ The control u(t) : t € [0, T] is chosen to drive the state x(t) from a
given initial state

x(0) = &. (4)

to the origin at a fixed final time T > 0, that is
x(T)=0. (5)

@ Also, the components of the control u(t) are constrained in
magnitude by

miax\u;(t)\ <1 (6)

forall t € [0, T]

e We call a control u(t) : t € [0, T] € L1[0, T] admissible if it satisfies
(6) for all t € [0, T], and the resultant state x(t) from (3) satisfies
boundary conditions (4) and (5). We denote by U(T,¢) the set of all
admissible controls.
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Minimum-Time Control and Reachable Set

To consider control in U(T,¢), it is necessary that U(T, &) # (). This
property is basically related to the minimum time control formulated as
follows.

Problem 2(Minimum-Time Control):

Find a control u € L[0, T] that satisfies (6), and drives x from initial
state £ € R”, to the origin 0 in minimum time.

Let T*(£) denote the minimum time (or the value function) of Problem 2.
Definition

(Reachable Set): We define the reachable set at time t € [0, 00) by

R(t) :={{ €R": T*(¢) < t}. (7)

and the reachability set




Problem formulation

To guarantee that U(T, &) is non-empty, we introduce the standing
assumptions:

e £€ER

o T > T*().
Now let us formulate our control problem. The maximum hands-off
control is a control that is the sparsest among all admissible controls in
U(T,&). In other words, we try to find a control that maximizes the time
interval over which the control u(t) is exactly zero. We state the
associated optimal control problem as follows.
Problem 4 (Maximum Hands-Off Control): Find an admissible control on
[0, T], u e U(T,¢&), that minimizes the sum of sparsity rates

< 1
Jo(u) =Y NiRr(uj) = FAilluillo, (9)
i—1

where \; > 0 are given weights.
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Convex Relaxation

Problem 6 (L!—Optimal Control): Find an admissible control u € U(T,¢)
on [0, T] that minimizes

(w) = Anu,nl—TZA/ £t (10)

where A\; > 0 are given weights.
The objective function (10) is convex in u and this control problem is
much easier to solve than the maximum hands-off control problem

13/23



Review of L!—Optimal Control

Let us first form the Hamiltonian function for the L' —optimal control
problem as

H(xop o) = 2 S0 Ml + pT(F(x) + - g(x)u)
i=1 i

(11)

where p is the costate (or adjoint) vector. Assume that u* = [u],..., u})]
is an L —optimal control and x* is the resultant state trajectory.
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Optimal Conditions

@ According to minimum principle, Ip* such that the optimal control
u* satisfies

H(x* (1), p*(£), u () < H(x*(£), p*(£), u(t)),
Vt € [0, T] and Vu € u(T,&).
o 2 — F(x*()) + I, &i(x* (1)) ur(t).

o T — (e (1)TpH(t) — XM, ur(B)gl(x* (1)) (8).
e x*(0)=¢and x*(T)=0
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The minimizer v* = [u], ..., u}] of the Hamiltonian is given by
o ui(t)= Dy, (g (NP (1), te[o,T]
@ D)(-) : R" — [-1,1] is the dead-zone function defined by

-1 w< =X\
0 A< w <A
Dy(w)=¢ 1 A<w a€ [-1,0] and b € [0,1]
a w=—X\
b w=A
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Normality
o If gi(x*(t))p*(t) is equal to *7’.\" or )‘—71 over a non-zero time interval,
say [t1, t2] € [0, T], where t; < tp, then the control u; (and hence u)
over [t1, t2] cannot be uniquely determined by the minimum principle.

e The interval [t1, tp] is called a singular interval, and a control problem
that has at least one singular interval is called singular. If there is no
singular interval, the problem is called normal.

Definition
(Normality) The L' —optimal control problem stated in Problem 6 is said
to be normal if the set

Ti={te[0, T]: |TA 'g(x"(1)p"(t)| = 1}

is countable for i = 1,--- , m. If the problem is normal, the elements
ty, tp,--- € T; are called the switching times for the control u;(t).
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Equivalence between L° and [!

If the problem is normal, the components of the L!—optimal control u*(t)
are piecewise constant and ternary, taking values 1, —1 or 0 at almost all
t € [0, T]. This property, named bang-off-bang, is the key to relate the
L'-optimal control with the maximum hands-off control.

Theorem

Assume that the L1-optimal control problem (Problem 6) is normal and
has at least one solution. Let Uy and U7 be the sets of the optimal
solutions of Problem 4 (maximum hands-off control problem) and Problem
6, respectively. Then we have Uj = Uj.
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Proof

By assumption, Uj # 00 = U(T,&) # 0. We first show that U # () and

then prove that U = U7.
For any u € U(T,¢), we have

Z)\/ t)|dt

Z / u(t)|dt
i—1 SUPP(UI)

1 m
<= ZA,/ ldt = Jo(u)  (13)
T i1 supp(u;)
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Now take an arbitrary uj € Uj. Since the problem is normal by
assumption, each control uj; in uj takes values —1,0, 1, at almost all
t € [0, T]. This implies that

1(u1) TZ/\/ |ugi(t)|dt

1 m
< Z)\,-/ ldt = bo(u)  (14)
T i=1 SUPP(UI‘,)

From (13) and (14), uj is a minimizer of Jy, that is uj € Ug. Thus,
&+ 0 and Ui C U}.
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Conversely, let uj € Uy C U(T,&). Take independently,
uy € U7 C U(T,¢&). From (14) and optimality of uf, we have

Jo(ur) = h(ug) < h(up). (15)
On the other hand, from (13) and optimality of uj, we have
Ji(ug) < Jo(ug) = Jo(u1).  (16)

It follows from (15) and (16) that J;(u;) = Ji(ug), and hence u§ achieves
the minimum value of J;. That is, uj € U7 and Ug C U7.
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