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Hands-off control

A hands-off control is defined as a control that has a short support
per unit time.

The maximum hands-off control is the minimum support (or sparsest)
per unit time among all controls that achieve control objectives.

The energy (or L2 -norm) of a control signal can be minimized to
prevent engine overheating or to reduce transmission cost by means of
a standard LQ (linear quadratic) control problem.

The minimum fuel control in which the total expenditure of fuel is
minimized with the L1 norm of the control.
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Motivation

In some situations, the control effort can be dramatically reduced by
holding the control value exactly zero over a time interval. We call
such control a hands-off control.

A motivation for hands-off control is a stop-start system in
automobiles. It is a hands-off control; it automatically shuts down the
engine to avoid it idling for long periods of time.

This strategy is also used in electric/hybrid vehicles, the internal
combustion engine is stopped when the vehicle is at a stop or the
speed is lower than a preset threshold, and the electric motor is
alternatively used.
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Usefulness

We can reduce CO or CO2 emissions as well as fuel consumption.
Hands-off control also has potential for solving environmental
problems.

In railway vehicles, hands-off control, called coasting, is used to
reduce energy consumption.

Hands-off control is desirable for networked and embedded systems
since the communication channel is not used during a period of
zero-valued control. This property is advantageous in particular for
wireless communications and networked control systems.
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Objective

For finite horizon continuous-time control, it is to show the
equivalence between the maximum hands-off control and L1 -optimal
control under a uniqueness assumption called normality.

This result rationalizes the use of L1 optimality in computing a
maximum hands-off control.

The same result is obtained for discrete-time hands-off control and an
L1/L2-optimal control to obtain a smooth hands-off control.
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Sparsity

For a continuous-time signal u(t) over a time interval [0,T ], we
define its Lp norm with p ∈ [1,∞) by

‖u‖p =

(∫ T

0
|u(t)|pdt

) 1
p

(1)

Lp[0,T ] = {u(t) : ‖u‖p <∞}
supp(u) = {t ∈ [0,T ] : u(t) = 0}
‖u‖0 := mL(supp(u)), where mL is the Lebesgue measure on R.
The L0 norm is not a norm since it fails to satisfy the positive
homogeneity property, that is, for any non-zero scalar α such that
|α| 6= 1, we have ‖αu‖0 = ‖u‖0 6= |α|‖u‖0, ∀u 6= 0.

The notation ‖ · ‖0 may be however justified from the fact that if
u ∈ L1[0,T ], then ‖u‖p <∞ for any p ∈ (0, 1) and
limp→0 ‖u‖pp = ‖u‖0. which can be proved by using Lebesgues
monotone convergence theorem.
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Maximum hand-off control problem

Definition

Sparsity Rate: For a measurable function u on [0,T ],T > 0, the sparsity
rate is defined by

RT (u) :=
1

T
‖u‖0. (2)

For any measurable function u, 0 ≤ RT (u) ≤ 1. if RT (u) << 1, then
we say that u is sparse.

The control objective is, roughly speaking, to design a control u
which is as sparse as possible, whilst satisfying performance criteria.
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Problem formulation

To formulate the control problem, we consider nonlinear multi-input plant
models of the form

dx(t)

dt
= f (x(t)) +

m∑
i=1

gi (x(t))ui (t), t ∈ [0,T ] (3)

where

x(t) ∈ Rn is the state,

u1, . . . , um are the scalar control inputs,

f and gi are functions on Rn . We assume that f (x), gi (x), and their
Jacobians f ′(x), g ′i (x) are continuous.

We use the vector representation u := [u1, . . . , um].
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Admissible

The control u(t) : t ∈ [0,T ] is chosen to drive the state x(t) from a
given initial state

x(0) = ξ. (4)

to the origin at a fixed final time T > 0, that is

x(T ) = 0. (5)

Also, the components of the control u(t) are constrained in
magnitude by

max
i
|ui (t)| ≤ 1 (6)

for all t ∈ [0,T ]

We call a control u(t) : t ∈ [0,T ] ∈ L1[0,T ] admissible if it satisfies
(6) for all t ∈ [0,T ], and the resultant state x(t) from (3) satisfies
boundary conditions (4) and (5). We denote by U(T , ξ) the set of all
admissible controls.
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Minimum-Time Control and Reachable Set
To consider control in U(T , ξ), it is necessary that U(T , ξ) 6= ∅. This
property is basically related to the minimum time control formulated as
follows.
Problem 2(Minimum-Time Control):
Find a control u ∈ L1[0,T ] that satisfies (6), and drives x from initial
state ξ ∈ Rn, to the origin 0 in minimum time.
Let T ∗(ξ) denote the minimum time (or the value function) of Problem 2.

Definition

(Reachable Set): We define the reachable set at time t ∈ [0,∞) by

R(t) := {ξ ∈ Rn : T ∗(ξ) ≤ t}. (7)

and the reachability set

R :=
⋃
t≥0

R(t). (8)
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Problem formulation

To guarantee that U(T , ξ) is non-empty, we introduce the standing
assumptions:

ξ ∈ R

T > T ∗(ξ).

Now let us formulate our control problem. The maximum hands-off
control is a control that is the sparsest among all admissible controls in
U(T , ξ). In other words, we try to find a control that maximizes the time
interval over which the control u(t) is exactly zero. We state the
associated optimal control problem as follows.
Problem 4 (Maximum Hands-Off Control): Find an admissible control on
[0,T ], u ∈ U(T , ξ), that minimizes the sum of sparsity rates

J0(u) :=
m∑
i=1

λiRT (ui ) =
1

T
λi‖ui‖0, (9)

where λi > 0 are given weights.
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Convex Relaxation

Problem 6 (L1−Optimal Control): Find an admissible control u ∈ U(T , ξ)
on [0,T ] that minimizes

J1(u) :=
1

T
λi‖ui‖1 =

1

T

m∑
i=1

λi

∫ T

0
|u(t)|dt, (10)

where λi > 0 are given weights.
The objective function (10) is convex in u and this control problem is
much easier to solve than the maximum hands-off control problem
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Review of L1−Optimal Control

Let us first form the Hamiltonian function for the L1−optimal control
problem as

H(x , p, u) =
1

T

m∑
i=1

λi‖ui‖1 + pT (f (x) +
m∑
i=1

g(x)ui )

(11)

where p is the costate (or adjoint) vector. Assume that u∗ = [u∗1 , . . . , u
∗
m]

is an L1−optimal control and x∗ is the resultant state trajectory.
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Optimal Conditions

According to minimum principle, ∃p∗ such that the optimal control
u∗ satisfies

H(x∗(t), p∗(t), u∗(t)) ≤ H(x∗(t), p∗(t), u(t)),

∀t ∈ [0,T ] and ∀u ∈ u(T , ξ).
dx∗(t)
dt = f (x∗(t)) +

∑m
i=1 gi (x

∗(t))u∗i (t).
dp∗(t)
dt = −f ′(x∗(t))Tp∗(t)−

∑m
i=1 u

∗
i (t)g ′i (x

∗(t))p∗(t).

x∗(0) = ξ and x∗(T ) = 0
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The minimizer u∗ = [u∗1 , . . . , u
∗
m] of the Hamiltonian is given by

u∗i (t) = −Dλi
T

(gi (x
∗(t))p∗(t)), t ∈ [0,T ]

Dλ(·) : Rn → [−1, 1] is the dead-zone function defined by

Dλ(w) =


−1 w < −λ
0 −λ < w < λ
1 λ < w
a w = −λ
b w = λ

a∈ [−1, 0] and b ∈ [0, 1]
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Normality

If gi (x
∗(t))p∗(t) is equal to −λi

T or λi
T over a non-zero time interval,

say [t1, t2] ∈ [0,T ], where t1 < t2, then the control ui (and hence u)
over [t1, t2] cannot be uniquely determined by the minimum principle.

The interval [t1, t2] is called a singular interval, and a control problem
that has at least one singular interval is called singular. If there is no
singular interval, the problem is called normal.

Definition

(Normality) The L1−optimal control problem stated in Problem 6 is said
to be normal if the set

Ti = {t ∈ [0,T ] : |Tλ−1i gi (x
∗(t))p∗(t)| = 1}

is countable for i = 1, · · · ,m. If the problem is normal, the elements
t1, t2, · · · ∈ Ti are called the switching times for the control ui (t).
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Equivalence between L0 and L1

If the problem is normal, the components of the L1−optimal control u∗(t)
are piecewise constant and ternary, taking values 1, −1 or 0 at almost all
t ∈ [0,T ]. This property, named bang-off-bang, is the key to relate the
L1-optimal control with the maximum hands-off control.

Theorem

Assume that the L1-optimal control problem (Problem 6) is normal and
has at least one solution. Let U∗0 and U∗1 be the sets of the optimal
solutions of Problem 4 (maximum hands-off control problem) and Problem
6, respectively. Then we have U∗0 = U∗1.
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Proof

By assumption, U∗1 6= ∅ ⇒ U(T , ξ) 6= ∅. We first show that U∗0 6= ∅ and
then prove that U∗0 = U∗1.
For any u ∈ U(T , ξ), we have

J1(u) =
1

T

m∑
i=1

λi

∫ T

0
|u(t)|dt

=
1

T

m∑
i=1

λi

∫
supp(ui )

|u(t)|dt

≤ 1

T

m∑
i=1

λi

∫
supp(ui )

1dt = J0(u) (13)
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Now take an arbitrary u∗1 ∈ U∗1. Since the problem is normal by
assumption, each control u∗1i in u∗1 takes values −1, 0, 1, at almost all
t ∈ [0,T ]. This implies that

J1(u∗1) =
1

T

m∑
i=1

λi

∫ T

0
|u∗1i (t)|dt

≤ 1

T

m∑
i=1

λi

∫
supp(u∗1i )

1dt = J0(u∗1) (14)

From (13) and (14), u∗1 is a minimizer of J0, that is u∗1 ∈ U∗0. Thus,
U∗0 6= ∅ and U∗1 ⊂ U∗0.
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Conversely, let u∗0 ∈ U∗0 ⊂ U(T , ξ). Take independently,
u∗1 ∈ U∗1 ⊂ U(T , ξ). From (14) and optimality of u∗1 , we have

J0(u∗1) = J1(u∗1) ≤ J1(u∗0). (15)

On the other hand, from (13) and optimality of u∗0 , we have

J1(u∗0) ≤ J0(u∗0) = J0(u∗1). (16)

It follows from (15) and (16) that J1(u∗1) = J1(u∗0), and hence u∗0 achieves
the minimum value of J1. That is, u∗0 ∈ U∗1 and U∗0 ⊂ U∗1.
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