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System Model

Sparse Linear Regression Problem

System Model

y = Ax0 + w ∈ Rm (1)

where A ∈ Rm×n (m < n) is a known matrix and w is an unknown
disturbance

Recovery algorithms

Greedy Methods : OMP, CoSAMP, SP, etc.

Relaxation based methods : BP, Lasso, FOCUSS, etc.

Iterative methods

Bayesian methods like MAP estimation, SBL, etc.
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Iterative Approaches

Iterative Thresholding

Iterative thresholding
Updates at each iteration given by,

zt = y −Axt (2)

xt+1 = ηt(x
t + AT zt) (3)

where,
ηt is scalar component-wise threshold functions
zt is the current residue

Simple settings

Case 1: A is orthogonal; Result in one iteration
Case 2: A is invertible; Clever scaling and thresholding

}
Both assume
m = n, hence not
under-determined

m < n case

Recovery when x0 is sufficiently sparse
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Iterative Approaches

Heuristics for Iterative Approaches1

A is Gaussian random matrix and m < n
Consider H = ATA− I, then ATy = x0 +Hx0

Hx0 approximated as noisy iid Gaussian vector

First iteration: Noisy version of sparse vector. Variance n−1||x0||22
Second iteration: AT (y −Ax1) = x0 +H(x0 − x1), noisy version with
variance n−1||x0 − x1||22.

Digital Communication Interpretation

w = Hx0 is cross-channel interpretation (Mutual access interference).

Thresholding suppresses interference by detecting “silent” channels and
setting them a priori to zero

Remaining interference proportional to estimation error rather than
estimand

1Donoho,Maleki,Montaneri’09
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Iterative Approaches

Why Message Passing?

Fast iterative methods faster than linear programming

Phase transition for Iterative methods occur at lower sparsity levels
than LP

2Figure Source: Donoho,Maleki,Montaneri’09
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Approximate Message passing (AMP)

Algorithm

initialize x0 = 0, z−1 = 0

for t = 0, 1, 2, . . .

zt = y −Axt +
1

δ
zt−1 〈η′t (A∗zt−1 + xt−1)〉

(4)

xt+1 = ηt
(
A∗zt + xt

)
(5)

AMP for linear programming formulation

”Iterative thresholding” plus ”Onsager correction term (MP term)”

Onsager correction term from theory of belief propagation.

State Evolution formalism for MSE
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Heuristic Derivation

Graphical Representation

x1

x2

xn

xn

N (y1; [Ax]1, σ
2)

N (y2; [Ax]2, σ
2)

N (ym; [Ax]m, σ
2)

...

...

Step 1: Construct a joint distribution over x1,x2, . . . ,xn
parameterized by β

Step 2: Write down sum-product algorithm
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Heuristic Derivation

Messages

Consider the following joint distribution,

µ(x) =
1

Z

N∏
i=1

exp (−β |xi|)
n∏
a=1

δ{ya=[Ax]a}

Update rules for i ∈ [n], a ∈ [m]

ν̂ta→i (xi) ∼=
∫ ∏

j 6=i

νtj→a (xi) δ{ya−[Ax]a}dx (6)

νt+1
i→a (xi) ∼= e−β|xi|

∏
b 6=a

ν̂tb→i (xi) (7)

Step 3: For large system limits, (6) and (7) can be approximated2as
Gaussian and product of Gaussian and Laplacian densities respectively

zta→i = ya −
∑

j∈[n]\i

Aajx
t
j→a (8)

xt+1
i→a = ηt(

∑
b∈[m]\a

Abiz
t
b→i) (9)

2Donoho,Maleki,Montaneri’10
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Heuristic Derivation

From Message Passing to AMP

For the update rules as above, 2mn messages need to be computed
Weak dependency on i in (8) and a in (9)

zta+δzta→i = ya −
∑
j∈[n]

Aaj
(
xtj + δxtj→a

)
+Aai

(
xti + δxti→a

)
(10)

xt+1
i + δxt+1

i→a = ηt

∑
b∈[m]

Abi
(
ztb + δztb→i

)
−Aai

(
zta + δzta→i

) (11)

Single terms of type Aaiδz
t
a→i are of order 1

N
and can be neglected.

Also, expanding (11) upto linear order, we get,

zta + δzta→i = ya −
∑
j∈[n]

Aaj
(
xtj + δxtj→a

)
+Aaix

t
i (12)

xt+1
i + δxt+1

i→a = ηt

∑
b∈[m]

Abi
(
ztb + δztb→i

)
− η′t

∑
b∈[m]

Abi
(
ztb + δztb→i

)Aaiz
t
a (13)
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Heuristic Derivation

Decomposition and Onsager Term

Decompose into independent sum terms

Eliminating the weak dependency terms, we get

xt+1
i = ηt

∑
b∈[m]

Abiz
t
b +

∑
b∈[m]

A2
bix

t
i

 (14)

zta = ya −
∑
j∈[n]

Aajx
t
j +

∑
j∈[n]

A2
ajη
′
t

(
xtj +

(
A∗zt

)
j

)
zta (15)

Using LLN and assumption that A is column normalized,∑
j∈[n]

A2
ajη
′
t

(
xtj +

(
A∗zt

)
j

)
≈ 1

m

∑
j∈[n]

η′t

(
xtj +

(
A∗zt

)
j

)
(16)

→ 1

δ

〈
η′t

(
xtj +

(
A∗zt

)
j

)〉
(17)
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State Evolution

Importance of Onsager Correction term

Onsager term approximates combined effect of reconstruction of
passing of mn messages in MP

Is AMP optimal?

Sparse denoising heuristic agrees qualitatively

Assume the “interference” is Gaussian and independent from iteration
to iteration

Recursive equation for formal MSE called State evolution

SE does not predict observed properties of iterative thresholding
algorithms!

Onsager term makes algorithm amenable to analysis through SE!
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State Evolution

Universality of State Evolution

State Evolution:

τ (t)r = Ψ(τ (t−1)
r ) = δ−1E(t) + τw (18)

E(t+1) = E
{[
η(t)

(
X +N

(
0, τ (t)r

))
−X

]2}
(19)

where, X ∼ p(x) = limn→∞
1
n

∑n
l=1 δ (x− x0l) and

τw = limm→∞
1
m

∑m
i=1 w

2
i ,

Ψ is called MSE map

The state evolution holds when A is drawn from i.i.d. Aij such that

E {Aij} =0

E
{
A2
ij

}
=1/m

E
{
A6
ij

}
=C/m for some fixed C > 0

often abbreviated as ”sub-Gaussian Aij”
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Optimality

Optimality Results

Exponential convergence of the algorithm

If “Highest Fixed point” of the MSE map is stable, then State
evolution converges exponentially fast to its limiting value3

MSE optimality of AMP

If State Evolution has a fixed unique point, then MSE converges to the
replica prediction of the MMSE as t→∞4

Achievability Analysis via AMP SE

Closed form for sparsity/undersampling region or Phase transition5

ρ(δ) = max
c>0

1− 2δ−1
[(

1 + c2
)

Φ(−c)− cφ(c)
]

1 + c2 − 2 [(1 + c2) Φ(−c)− cφ(c)]

If ρ < ρ(δ), then the formal MSE of optimally-tuned AMP evolves to
zero under SE6.

3Donoho,Maleki,Montaneri’10
4Donoho,Maleki,Montaneri’11
56Donoho,Maleki,Montaneri’09
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Algorithm Recap

v(t) = y −Ax(t) + µ(t)

x(t+1) = η(t)

x(t) +A>v(t)︸ ︷︷ ︸
,r(t)


µ(t) =

1

m
v(t−1)

n∑
j=1

η(t−1)′
(
r
(t−1)
j

)
Original AMP Assumptions

A ∈ Rm×n drawn from i.i.d subgaussian

m,n→∞ s.t. m
n
→ δ ∈ (0,∞) (large-system limit)

Additional assumption for proof sketch7

Components of A i.i.d Bernoulli (i.e Ai,j ∈ ± 1√
m

)

Ai,j independent of
{
r
(t−1)
il

}n
l=1

, {xl}nl=1 , and {wk}mk=1

3Schniter’19
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Proof - I (Input error analysis)

Analyze error e(t) on input to denoiser

e(t) = r(t) − x

Re-writing,

e(t) =
(
I −A>A

)
x(t) −

(
I −A>A

)
x+A>

(
w + µ(t)

)
(20)

Examine jth component of first term of e(t)

[(
I −A>A

)
x(t)]j

]
=

(
1−

m∑
i=1

a2ij

)
x
(t)
j −

∑
i

aij
∑
l6=j

ailx
(t)
l

= −
∑
i

aij
∑
l6=j

ailη
(t−1)

(
r
(t−1)
l

)
= −

∑
i

aij
∑
l6=j

ailη
(t−1)(x

(t−1)
l +

∑
k 6=i

aklv
(t−1)
k︸ ︷︷ ︸

,r(t−1)
il

+ailv
(t−1)
i )
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Proof - II (Important Lemma’s

Lemma 1. Consider the quantity zi =
∑n
j=1 aijuj , where aij are

realizations of i.i.d. random variables Aij with zero mean and
E
{
A2
ij

}
= 1/m.

If {Aij} are drawn independently of {uj} , and {uj} scale as O(1) in
the large-system limit, then zi also scales as O(1)

Lemma 2. Under the additional assumptions and Onsager choice for
µ(t), the elements of v(t), r(t),x(t) and µ(t) scale as O(1) in the
large-system limit for all iterations t.

η(t−1)
(
r
(t−1)
il + ailv

(t−1)
i

)
= η(t−1)

(
r
(t−1)
il

)
+ ailv

(t−1)
i η(t−1)′

(
r
(t−1)
il

)
+

1

2
a2il

(
v
(t−1)
i

)2
η(t−1)′′

(
r
(t−1)
il

)
︸ ︷︷ ︸

O(1/m)
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Proof - III (Error characterization)

Applying Taylor series expansion

[
(
I −A>A

)
x(t)]j

≈ −
∑
i aij

∑
l 6=j ailη

(t−1)
(
r
(t−1)
il

)
− 1

m

∑
i aijv

(t−1)
i

∑
l 6=j η

(t−1)′
(
r
(t−1)
il

)
(21)

Similarly, [(
I −A>A

)
x
]
j

= −
∑
i

aij
∑
l 6=j

ailxl (22)

Using (21) and (22) on (20),

e
(t)
j =

∑
i aij

∑
l 6=j ail

[
xl − η(t−1)

(
r
(t−1)
il

)]
+
∑
i aijwi

+
∑
i aij

[
µ
(t)
i − v

(t−1)
i

1
m

∑
l6=j η

(t−1)′
(
r
(t−1)
il

)] (23)

First and Second terms behave like realizations of Gaussians in
large-system limit.

In the third term v
(t−1)
i is strongly coupled to aij , hence difficult to

characterize for general µ
(t)
i
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Proof - IV (Onsager term)

For Onsager choice, 3rd term of (23) takes the form,∑
i aij

[
1
m
v
(t−1)
i

∑
l η

(t−1)′
(
r
(t−1)
l

)
− 1

m
v
(t−1)
i

∑
l6=j η

(t−1)′
(
r
(t−1)
il

)]
= 1

m

∑
i aijv

(t−1)
i

[
η(t−1)′

(
r
(t−1)
j

)
+
∑
l 6=j

(
η(t−1)′

(
r
(t−1)
l

)
− η(t−1)′

(
r
(t−1)
il

)) ]
≈ 1

m

∑
i aijv

(t−1)
i

[
η(t−1)′

(
r
(t−1)
j

)
+
∑
l 6=j ailv

(t−1)
i η(t−1)′′

(
r
(t−1)
il

)]
First term,

1

m

m∑
i=1

aijv
(t−1)
i η(t−1)′

(
r
(t−1)
j

)
︸ ︷︷ ︸

O(1/
√
m)

= O(1/
√
m)

Second term,

1

m

m∑
i=1

aij
(
v
(t−1)
i

)2∑
l 6=j

ailη
(t−1)′′

(
r
(t−1)
il

)
︸ ︷︷ ︸

O(1)︸ ︷︷ ︸
O( 1√

m
)

= O(1/
√
m)
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Proof - V (Mean Squared error)

For large m and Onsager term choice, (20) becomes,

e
(t)
j ≈

∑
i

aij
∑
l 6=j

ail[xl − η(t−1)
(
r
(t−1)
il

)
︸ ︷︷ ︸

,ε(t)
il

] +
∑
i

aijwi (24)

First term converges to Gaussian with mean and variance,

E

∑
i

Aij
∑
l 6=j

Ailε
(t)
il

 =
∑
i

E {Aij}
∑
l 6=j

E {Ail} ε
(t)
il = 0 (25)

E


∑

i

Aij
∑
l 6=j

Ailε
(t)
il

2 =
∑
i

E
{
A2
ij

}∑
l6=j

E
{
A2
il

}(
ε
(t)
il

)2
=

1

m2

∑
i

∑
l 6=j

(
ε
(t)
il

)2
(26)

From Taylor expansion, ε
(t)
il can be approximated to ε

(t)
l in large system limit

Dependence on i is removed in (26), and can be approximated as δ−1E(t)

E(t) , limn→∞
1
n

∑n
l=1

(
ε
(t)
l

)2
is the average squared error
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Proof - VI (AMP State evolution)

Similar to average squared error, second term in (24) converges to
Gaussian with mean 0 and variance τw which is the second moment of
noise.

τw , lim
m→∞

1

m

m∑
i=1

w2
i

With AMP’s choice of µ(t), jth component of denoiser input error,

e
(t)
j ∼ N (0, δ−1E(t) + τw︸ ︷︷ ︸

,τ(t)r

)

Using definition of E(t),

1

n

n∑
l=1

(
ε
(t)
l

)2
≈ 1

n

n∑
l=1

[
η(t−1)

(
xl +N

(
0, τ (t−1)

r

))
− xl

]2
= E

[
η(t−1)

(
X +N

(
0, τ (t−1)

r

))
−X

]2
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Prior Information

AMP with Prior Information

So far, distribution of signal not known

If input distribution can be estimated, it can improve the recovery
algorithms and also can be used as a benchmark

Consider distribution,

µ(x) =
1

Z

n∏
a=1

δ{ya=[Ax]a}

N∏
i=1

αi (xi)

Sum-product update rules can be simplified similar to AMP updates

Consider a family of densities,

fi(ds;x, b) ≡
1

zβ(x, b)
exp

{
− β

2b
(s− x)2

}
αi(ds)

F denote its mean.

AMP updates obtained

xt = F
(
xt +A∗zt; τ t

)
zt+1 = y −Axt +

1

δ
zt
〈
F′
(
xt−1 +A∗zt−1)〉
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Prior Information

AMP Extensions

Few algorithms

Vector AMP

DCS-AMP

AMP for SBL

AMP with Side Information

Future ideas

AMP for structured sparse signal like block sparsity, hierarchical
sparsity, etc.

Effect of correlation in signals
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