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System Model & Problem Statement

System Model & Problem Statement

Uplink of a single cell massive MIMO wireless communication system
Nr receive antennas at the base station (BS)
K single transmit antenna users

Complex baseband received signal at the tth symbol interval y
(t)
c ∈ {±1± j}Nr×1 at the BS:

y
(t)
c = Q

(

z
(t)
c

)

= Q
(

Hcx
(t)
c + w

(t)
c

)

where
z(t)c ∈ C

Nr×1 is the unquantized received signal

Hc = [hc (1), . . . , hc (K)] ∈ C
Nr×K is the channel matrix

Each entry of Hc distributed as i.i.d. CN (0, 1)

w(t)
c ∈ C

Nr×1 is the additive white Gaussian noise distributed as CN (0, σ2INr )

x(t)c = [x(t)c (1), . . . , x(t)c (K)]T ∈
{

± 1√
2
± j√

2
)
}K×1

is the QPSK modulated transmit symbols of

the K users at the tth symbol interval

We assume perfect knowledge of the channel state information at the transmitter (CSIT)
Extensions (TBD): Imperfect CSIT, pilot contamination effects in a multicell scenario on the BER
performance

(Sai Subramanyam Thoota, ECE, IISc) Main Presentation March 30, 2019 3 / 18



System Model & Problem Statement

System Model & Problem Statement contd.

Converting the signal into real domain, we get

y(t) = Q
(

z
(t)
re

)

= Q
(

Hrex
(t)
re + w(t)

)

= Q
(

Hb(t) + w(t)
)

where
b(t) =

√
2x(t)re , H = 1√

2
Hre ∈ C2Nr×2K

b ∈ {±1}2K×1

w(t) ∼ CN (0, σ
2

2 I2Nr )

LTE/LTE-Advanced, 5G wireless communication systems have a channel encoder/decoder at
the Tx/Rx

Instead of detecting the hard QPSK symbols, we need soft decisions (beliefs/probabilities) at the
output of the demodulator

Goal is to obtain the soft decisions of the transmit symbols b and to decode the transmit
bits from the 1-bit quantized received signal

Currently, QPSK modulation is considered because of the 1-bit quantization
Further extensions: Can any space-time coding scheme be designed to decode higher order
modulation schemes?
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Variational Bayesian Inference

Variational Bayesian Inference

Consider a Bayesian model
Observations Z = {z1, . . . , zN}
Latent variables X = {x1, . . . , xN}

Goal is to find an approximation for the posterior distribution p(X|Z) and the model evidence
p(Z)

Exact computations are computationally intractable

ln p(Z) = L(q) + KL(q‖p)

where

L(q) ,
∫

q(X) ln

{

p(Z,X)

q(X)

}

dX

KL(q‖p) = −
∫

q(X) ln

{

p(X|Z)
q(X)

}

dX ≥ 0

Need to find a distribution q(X) which will maximize the evidence lower bound (ELBO) L(q)
Maximum occurs when q(X) = p(X|Z) =⇒ computational intractability
Impose structure on q and minimize the KL divergence
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Variational Bayesian Inference

Factorized distributions for q
Approximation framework developed in physics called mean field theory

q(X) =
M
∏

i=1

qi (Xi )

L(q) =
∫

∏

i

qi

{

ln p(Z,X)−
∑

i

ln qi

}

dX

=

∫

qj

∫

ln p(Z,X)
∏

i 6=j

qidXidXj −
∫

qj ln qjdXj −
∑

i 6=j

∫

qi ln qidXi

=

∫

qj ln p̃(Z,Xj )dXj −
∫

qj ln qjdXj + const.

= −KL
(

qj‖p̃(Z,Xj)
)

+ const. (1)

where

ln p̃(Z,Xj ) , Ei 6=j [ln p(Z,X)] + const.

To maximize L(q), need to minimize the KL divergence in (1)
Minimum occurs when qj (Xj ) = p̃(X,Xj )
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Variational Bayesian Inference

Optimal qj is given by

q⋆j (Xj ) = const × exp
(

Ei 6=j [ln p(Z,X)]
)

=
exp

(

Ei 6=j [ln p(Z,X)]
)

∫

exp
(

Ei 6=j [ln p(Z,X)]
)

dXj

Can obtain the parameters of the distribution q⋆
j
(Zj ) by inspection

Fix qi 6=j and obtain the parameters of qj and iterate for all j
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Quantized Variational Bayesian Soft Symbol Decoder

Quantized Variational Bayesian Soft Symbol Decoder (QVBSSD)

Bayesian Network Model for the massive MIMO wireless communication system

γ b z y

wσ2

H

Figure: Graphical model for the quantized MU-MIMO wireless communication system

The transmit bits are parameterized by γ

p (bn = 1|γn) = γn = 1− p (bn = −1|γn)

The joint distribution of the observations and the latent variables is given by

p
(

y, z, b,γ|H;σ2
)

= p (y|z)p
(

z|H,b; σ2
)

p (b|γ) p (γ)
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Quantized Variational Bayesian Soft Symbol Decoder

The conditional distributions of the latent variables is computed as

p(z|H, b; σ2) = 1

(πσ2)2Nr
exp

(

− 1

σ2
‖z− Hb‖2

)

p (b|γ) =
2K
∏

n=1

p (bn|γn) =
2K
∏

n=1

γ
1+bn

2
n (1− γn)

1−bn
2

p (γ) =
2K
∏

n=1

1 (γn ∈ [0, 1])

The conditional distribution of the quantized received signal given the unquantized signal is
given as

p (y|z) = 1

(

z ∈
[

z(lo), z(hi)
])

where z(lo) and z(hi) are the lower and upper thresholds corresponding to the observations y
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Quantized Variational Bayesian Soft Symbol Decoder

Approximation of the posterior distribution using a factorized distribution as:

p
(

z, b,γ|y,H;σ2
)

= qz (z)
2K
∏

n=1

qbn (bn) qγn (γn)

Computation of qz(z):

ln qz(z) ∝
〈

ln p (y|z) + ln p
(

z|H, b;σ2
)〉

qb(b)

∝
〈

ln1
(

z ∈
[

z(lo), z(hi)
])

− 1

σ2
‖z− Hb‖2

〉

qb(b)

z is truncated Gaussian distributed with mean

〈z〉 = H 〈b〉+
φ

(

z(lo)−H〈b〉
σ/

√
2

)

− φ

(

z(hi)−H〈b〉
σ/

√
2

)

Φ
(

z(hi)−H〈b〉
σ/

√
2

)

−Φ
(

z(lo)−H〈b〉
σ/

√
2

)

σ√
2

where φ and Φ are the pdf & cdf of the standard normal distribution
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Quantized Variational Bayesian Soft Symbol Decoder

Computation of qγn (γn):

ln qγn (γn) ∝ 〈ln p (b|γ) + ln p (γ)〉{qγm (γm)}2K
m=1
m 6=n

qb(b)

∝
〈

2K
∑

k=1

1 + bk

2
ln γk +

1− bk

2
ln(1− γk) + ln1(γk ∈ [0, 1])

〉

{qγm (γm)}2K
m=1
m 6=n

qb(b)

∝ 1 + 〈bn〉
2

ln γn +
1− 〈bn〉

2
ln(1− γn) + ln1(γn ∈ [0, 1])

γn is beta distributed with parameters 3+〈bn〉
2

, and 3−〈bn〉
2

, and mean

〈γn〉 =
3 + 〈bn〉

6

〈ln γn − ln(1− γn)〉 = ψ

(

3 + 〈bn〉
2

)

− ψ

(

3− 〈bn〉
2

)

where ψ(.) is the digamma function1

1ψ(x) = d
dx

ln Γ(x)
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Quantized Variational Bayesian Soft Symbol Decoder

Computation of qbn (bn)

ln qbn (bn) ∝
〈

ln p
(

z|H,b; σ2
)

+ ln p (b|γ)
〉

qz(z),qγ (γ),{qbm (bm)2K
m=1
m 6=n

∝
〈

− 1

σ2
‖z−Hb‖2 +

2K
∑

k=1

1 + bk

2
ln γk

+
1− bk

2
ln(1− γk)

〉

qz(z),qγ(γ),{qbm (bm)}2K
m=1
m 6=n

∝ − 1

σ2n

(

b2n − 2bnµn
)

(2)

where

µn =
〈z〉T H(:,n) −HT

(:,n)
H 〈b〉 +

∑2Nr
m=1 H

2
(m,n)

〈bn〉+ σ2

4
〈ln γn − ln(1− γn)〉

∑2Nr
m=1 H

2
(m,n)

(3)

σ2n =
σ2/2

∑2Nr
m=1 H

2
(m,n)

(4)

bn is Gaussian distributed with mean and variance given in (3) and (4) respectively
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Quantized Variational Bayesian Soft Symbol Decoder

Truncated Gaussian approximation for bn
〈ln γn − ln(1 − γn)〉 needs 〈bn〉 to be in the interval (−3, 3) as the digamma function ψ(x) cannot
be evaluated for x ≤ 0
Adding and subtracting a constant term to (2), we approximate the Gaussian distribution with a

truncated Gaussian distribution with mean given by 2

〈bn〉 = µn +
φ
(

− 3+µn
σn

)

− φ
(

3+µn
σn

)

Φ
(

3+µn
σn

)

− Φ
(

− 3+µn
σn

)σn

where φ and Φ are the pdf & cdf of the standard normal distribution

2Infinite loop due to this sometimes. Currently removed it with a heuristic hack using an approach taken in simulated
annealing i.e., decreasing the limits of the truncated Gaussian if needed. But not sure whether the infinite loop will be caught in
some other corner cases. Need to check this in more detail
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Quantized Variational Bayesian Soft Symbol Decoder

QVBSSD Flow Diagram

Input: H, y, σ2

Initialize 〈b〉

Compute 〈z〉

Compute 〈γ〉

Compute 〈b〉

Converged?

Output soft symbol vector 〈γ〉

No

Yes
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Preliminary Simulation Results

Preliminary Simulation Results

Simulation Setup

Number of users K = 30

Number of receive antennas Nr = 100

Channel Code:
LDPC Code rate 1/3
Dimension of parity check matrix: 2304× 3456

QPSK symbols normalized to have average energy of 1
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Preliminary Simulation Results

Preliminary Simulation Results contd.
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Figure: Nr = 100,K = 30, LDPC Code Rate 1/3
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Future Work

Future Work

Pilot contamination and imperfect CSIT effects on the BER performance

Extension to higher order modulation schemes (new signaling scheme)

DNN implementation of QVBSSD

Sparse signal recovery extension of QVBSSD
Building up a use-case. Just thinking aloud!
In MMTC, most of the devices are stationary whose channels have a larger coherence period. Can
we include the channels as the columns of the dictionary and try to recover the transmit symbols
which are the rows of the sparse MMV?
Channel errors =⇒ dictionary errors. Alternating optimization of the dictionary (channel matrix)
and the transmit symbols...

BER analysis???
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Future Work

THANK YOU!
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