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Introduction

It is possible to reliably recover sparse signals from very few linear
measurements

Conventional schemes are non-adaptive, the measurement matrix
is fixed beforehand

Can adaptive schemes provide any advantage? For example, can
we reduce the MSE if the rows of the measurement matrix are
chosen adaptively?
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Introduction

Main result: For any adaptive sensing scheme and estimation
procedure, it is impossible to significantly outperform random
projection followed by `1 minimization

Model
y = Ax+ z

with A ∈ Rm×d and z ∈ N (0, σ2I)

Let A be a random projection matrix with unit norm rows and let
x̂ be the output of the Dantzig selector. Then,

E‖x̂− x‖22 ≤ c
k

m
dσ2 log d

provided m ≥ k log d
k .

This scaling is optimal.
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Adaptive schemes

Let a>i be the rows of A and recall

yi = a>i x+ zi, i ∈ [m]

Adaptive scheme: ai is a (possibly random) function of
(a1, y1, . . . , ai−1, yi−1).

Main result (formal). Let d ≥ 2, k < d
2 and consider any m. Then,

inf
x̂

sup
‖x‖0≤k

E‖x̂− x‖22 ≥ c
k

m
dσ2.
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Proof strategy

First lower bound the MSE for x drawn from the following prior:

xi =
{
µ, w.p. k/d
0, w.p. 1− k/d.

Show lower bound for support recovery

Extend to MSE lower bound

Extend to lower bound for arbitrary x
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Support recovery error

Can restrict to ai that are deterministic functions of (y1, . . . , yi−1)

Assumptions: ‖ai‖2 ≤ 1, σ = 1

We first look at error in support recovery when adaptive schemes
are allowed

Error metric: expected Hamming distance

E|Ŝ∆S| =
d∑

i=1
P(Ŝi 6= Si)
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Support recovery error

Result: Suppose x is sampled from the Bernoulli prior with
k < d/2. Then any estimate Ŝ obeys

E|Ŝ∆S| ≥ k
(

1− µ

2

√
m

d

)
If signal amplitude is low (say µ ≤

√
d/m), then large number of

errors (E|Ŝ∆S| ≥ k/2)
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Support recovery error

Let P1,j = P (·|xj 6= 0) and P0,j = P (·|xj = 0) for any j ∈ [d]

Let π1 = k/d and π0 = 1− k/d. Then

P(Ŝj 6= Sj) = π1P1,j(Ŝj = 0) + π0P0,j(Ŝj 6= 0)

Optimizing over all tests, the Bayes risk is

B ≥ min(π0, π1)(1− dT V (P0,j , P1,j))

where dT V denotes the total variation distance
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Support recovery error

Expected Hamming distance

E|Ŝ∆S| =
d∑

j=1
P (Ŝj 6= Sj)

≥
d∑

j=1
Bj

≥ π1

d∑
j=1

(1− dT V (P0,j , P1,j))

≥ k
(

1− 1√
d

√√√√√ d∑
j=1

d2
T V (P0,j , P1,j)

)
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Support recovery error

Using

E|Ŝ∆S| ≥ k
(

1− 1√
d

√√√√√ d∑
j=1

d2
T V (P0,j , P1,j)

)

and
d∑

j=1
d2

T V (P0,j , P1,j) ≤ mµ2

4

we get the final result.
We now prove the second inequality.
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Support recovery error

We first upper bound dT V (P0,j , P1,j). Using Pinsker’s inequality

d2
T V (P0,j , P1,j) ≤ π0

2 D(P0,j‖P1,j) + π1
2 D(P1,j‖P0,j)

Let P0,j = P0 and P1,j = P1 and note

P0 =
∑
x′

P (x′)P (y1, . . . , ym|x′, xj = 0)

=:
∑
x′

P (x′)P0,x′

where x′ = (x1, . . . , xj−1, xj+1, xd)

Similar expression for P1
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Support recovery error

Thus

D(P0‖P1) = D(
∑
x′

P (x′)P0,x′‖
∑
x′

P (x′)P1,x′)

≤
∑
x′

P (x′)D(P0,x′‖P1,x′)

using joint convexity of KL divergence
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Support recovery error

What are P0,x′ and P1,x′?

Recall that

yi = a>i x+ zi

=
d∑

l=1
ailxl + zi

Let j ∈ [d]. For xj = 0,
yi = ci + zi

and for xj = µ
yi = ci + µaij + zi

where ci =
∑

l 6=j ailxl
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Support recovery error

Thus,
P (yi|x′, xj = 0) ≡ N (ci, σ

2)

and
P (yi|x′, xj = 1) ≡ N (ci + µaij , σ

2)
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Support recovery error

This gives

D(P0,x′‖P1,x′) = D(P (y|x′, xj = 0)‖P (y|x′, xj = 1))

= EP0,x′

m∑
i=1

log P (yi|x′, xj = 0)
P (yi|x′, xj = 1)

= EP0,x′

m∑
i=1

1
2

(
(yi − ci − µaij)2 − (yi − ci)2

)

= µ2

2

m∑
i=1

EP0,x′a2
ij
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Support recovery error

Finally,

D(P0‖P1) ≤
∑
x′

P (x′)D(P0,x′‖P1,x′)

≤
∑
x′

P (x′)µ
2

2

m∑
i=1

E(a2
ij |xj = 0)

Similarly,

D(P1‖P0) ≤
∑
x′

P (x′)µ
2

2

m∑
i=1

E(a2
ij |xj 6= 0)
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Support recovery error

Relating to the total variation distance,

d∑
j=1

d2
T V (P1,j , P0,j) ≤ µ2

4
∑
i,j

Ea2
ij

= mµ2

4
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Support recovery error

Lower bound on expected Hamming distance

E|Ŝ∆S| ≥ k
(

1− 1√
d

√√√√√ d∑
j=1

d2
T V (P1,j , P0,j)

)

≥ k
(

1− µ

2

√
m

d

)
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Connecting to MSE

Let S = supp(x) and Ŝ = {j : x̂j ≥ µ/2}. Then,

‖x̂− x‖22 =
∑
j∈S

(x̂j − xj)2 +
∑

j∈SC

x̂J2

≥ µ4

2 |S\Ŝ|+
µ2

4 |Ŝ\S|

= µ2

4 |Ŝ∆S|
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Connecting to MSE

Taking expectation,

E‖x̂− x‖22 ≥
µ2

4 E|Ŝ∆S|

≥ µ2

4 k
(

1− µ

2

√
m

d

)
Final step: bound for arbitrary x
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