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Introduction

m [t is possible to reliably recover sparse signals from very few linear
measurements

m Conventional schemes are non-adaptive, the measurement matrix

is fixed beforehand

m Can adaptive schemes provide any advantage? For example, can
we reduce the MSE if the rows of the measurement matrix are
chosen adaptively?
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Introduction

m Main result: For any adaptive sensing scheme and estimation
procedure, it is impossible to significantly outperform random
projection followed by ¢; minimization

m Model
y=Axr+z

with A € R™*? and z € N(0,0%])

m Let A be a random projection matrix with unit norm rows and let
Z be the output of the Dantzig selector. Then,

k
E|# — 2|3 < c—do”logd
m

provided m > klog %.
This scaling is optimal.



Adaptive schemes

m Let a;r be the rows of A and recall
yz-:a;—x—i—zi, i € [m]

Adaptive scheme: a; is a (possibly random) function of
(a1, 91,5 Qim1,Yi-1)-

m Main result (formal). Let d > 2, k < ¢ and consider any m. Then,

k
1nf sup E|z — |3 > c—do
¥ lwllo<k



Proof strategy

m First lower bound the MSE for « drawn from the following prior:

w, w.p. k/d
€T, =
0, wp.1—£k/d.

m Show lower bound for support recovery

m Extend to MSE lower bound

m Extend to lower bound for arbitrary x



Support recovery error

m Can restrict to a; that are deterministic functions of (y1,...,yi—1)

Assumptions: ||a;ll2 <1,0=1

m We first look at error in support recovery when adaptive schemes
are allowed

m Error metric: expected Hamming distance

d
E[SAS| =Y P(S5; # Si)

i=1



Support recovery error

m Result: Suppose x is sampled from the Bernoulli prior with
k < d/2. Then any estimate S obeys

N wo/m
> — =4/ —
E|SAS| > k:(l 5 d)

m If signal amplitude is low (say p < /d/m), then large number of
errors (E|SAS| > k/2)



Support recovery error

m Let P, ; = P(:|z; #0) and Py ; = P(-|z; = 0) for any j € [d]
m Let m = k/d and mo =1 — k/d. Then
P(S; # ;) = mP1;(S; = 0) + m0Po,j(S; # 0)
m Optimizing over all tests, the Bayes risk is
B > min(mg, m1)(1 — drv (FPoj, Pij))

where dry denotes the total variation distance



Support recovery error

m Expected Hamming distance

d
E[SAS| =Y " P(S; #5;)
j=1
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Support recovery error

m Using
. 1|
E|SAS| > k(l -7 jZldQTv(Po,pPl,j))
and
d , mu
> drv(Pog Prj) < ==

j=1
we get the final result.
We now prove the second inequality.
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Support recovery error

m We first upper bound dry (P j, P1,j). Using Pinsker’s inequality
2 0 T
dry (Pog, Prj) < 5 D(FollPrj) + 5 D(Pyjl Pog)
m Let Py; = [y and P ; = P; and note
Py=> P(@)Py1,... ,ymlz,x; =0)
z/
=Y P(2) Py
I/

/
where 2’ = (z1,...,2j-1,%j41,2q)

m Similar expression for P;



Support recovery error

m Thus
D(R| ) = ZP P0x||ZP )P ar)

<ZP D(Py |P1I)

using joint convexity of KL divergence



Support recovery error

s What are I ;v and Py ;7
m Recall that

i =aj x+ 2
d
= Z ary + 2
1=1

m Let j € [d]. For z; =0,
Yi =citzi

and for z; = p
Yi = ¢+ pag; + 2

where ¢; = ;4 aizy



Support recovery error

m Thus,
P(y;|2’, x; = 0) = N(ci, 0?)

and
Pyl x; = 1) = N(¢; + paij, o)



Support recovery error

m This gives
D(Pow||Prar) = D(P(yla', z; = 0)[| P(yla’, z; = 1))

s P(yi|a’,z; = 0)
=Ep > 1 2
Po,x ; og P(yi|$/,$j =1)

"1
=Ep, o Z 5 <(yi — ¢ — pai)® — (yi — Ci)2>

=1

2

m
% ZEPO Z"aj
=1



Support recovery error

= Finally,

D(Po||Pr) <) P(a')D(Po || Prar)

2 m
M 2 _
< ;P(l’,)j ;E(aiﬂ% =0)
m Similarly,
2 m
D(P|Py) < P(a) e ST E(a2 |25 # 0)



Support recovery error

m Relating to the total variation distance,

d 2
1
> diy(Pry, Poy) < T > Eaj;
=1 i
mpu?

4



Support recovery error

m Lower bound on expected Hamming distance

EmAsuzk@.— }:d .HJJhﬁ>

wofm
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Connecting to MSE

m Let S =supp(x) and S = {j : #; > p/2}. Then,

12 =2l =D (2 —a)* + > 2J°

JjeS jese
Bavar K e
> S IS\S|+ T [5\S]

2
_ g
= 5155



Connecting to MSE

m Taking expectation,

1
Blle - a3 > L BlSAS)

2

p po[m
>0 B
4k<1 2 d)

m Final step: bound for arbitrary x
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