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Gaussian mixture model

m Gaussian mixture model
k
p(x;0) = > wiN(p;,0714)
i=1

where 0 = ({p; ), {oi} iy, {witi,)

m Given data points x1,...,X,,, the goal is to fit a mixture of k
Gaussians to it



Gaussian mixture model
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Separation between components

m We look at the clustering problem, i.e., assigning a label from
{1,...,k} to each x;

m Separation between component Gaussians
m Cannot resolve between two clusters if the means are very close

m For e.g., in 1-D, if separation is approximately three standard
deviations, then clusters are ”"well separated”

m What happens in higher dimensions?



Separation between components

m For x ~ N(u,021;), expected squared distance from center is
2 2
Ellx — plly = do

m To resolve between two d-dimensional spherical Gaussians, need
separation of 2v/do between their centers

m Separation requirement may be difficult to meet for huge d

m Idea: project data onto a k-dimensional subspace of R% now
separation requirement would be vko
This k-dimensional subspace will be the span of the mean vectors



Key ideas

m Project data onto a lower dimension subspace for easier separation
condition

m The best fit 1-D subspace to a spherical Gaussian is the line
through its center and the origin

m The best fit k-dimensional subspace for k spherical Gaussians is
the subspace containing their centers
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Best fit subspace to a spherical Gaussian




Projection onto span of means

m Assume that the means pq,..., pu; are known and let U be the
subspace spanned by them

m Projecting the data onto U doesn’t change the separation, because
the means remain unchanged

m Can use distance-based clustering in R* which work with ket
separation

m In reality, we don’t know the span of the means
Find a projection such that the location of the mean vectors is
preserved



Span of means and SVD

m Let V C R? be the span of top k singular vectors of data matrix
X e Rmxd

m If we project rows of X onto V', then separation between mean
vectors is approximately preserved: V behaves in the same way as
U

m For a vector v, let projy-v denote its projection onto subspace W
For a matrix M, let projy, M is a matrix whose rows are the rows
of M projected onto W
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Span of means and SVD

m Facts
m V is the subspace that maximizes ||projy, A|| among all
k-dimensional subspaces W

m U is the subspace that maximizes E|projy A|l

m Connecting U and V
m On average, the best k-dimensional subspace approximating X is
U = span{py; ..., .}

m With large probability, the the space spanned by the top k singular
vectors of X approximates U well
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Concentration result

m For a sufficiently large sample from a mixture of Gaussians, with
high probability the subspace found by SVD is very close to the
one spanned by the mean vectors

m First show that for an arbitrary subspace W,

—2mk

m Show P(||projy Al|> > (1 + €)E||projy Al|?) < ke~ 3

m Proof uses x? concentration



Main result

m Let the rows of X € R”™*¢ be sampled from a mixture of
Gaussians with unifrom weights, means pq, ..., p; and variance o.
Let V' C R? be the subspace spanned by the top k singular vectors
of X and let U be the span of the means. Then, for € € (0, %), if

>Ck—|—<dlnd—|— d lnk>
m=a e d—k 4§)
we have w.p. 1 —¢

. . d
Iprojy X - [projy BX P < emo®(§ - 1). (1)

m Shows that ||p; — p;|| is small, where p; are the projected means



Other approaches

Algorithms based on random projections

Algorithms that combine projection idea and EM

m Distribution learning: output a mixture distribution that
minimizes a certain loss

Separation criterion required for all clustering algorithms, not
necessary for learning
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