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Gaussian mixture model

Gaussian mixture model

p(x; θ) =
k∑

i=1
wiN (µi, σ

2
i Id)

where θ = ({µi}ki=1, {σi}ki=1, {wi}ki=1)

Given data points x1, . . . ,xm, the goal is to fit a mixture of k
Gaussians to it
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Gaussian mixture model
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Separation between components

We look at the clustering problem, i.e., assigning a label from
{1, . . . , k} to each xi

Separation between component Gaussians
Cannot resolve between two clusters if the means are very close

For e.g., in 1-D, if separation is approximately three standard
deviations, then clusters are ”well separated”

What happens in higher dimensions?
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Separation between components

For x ∼ N (µ, σ2Id), expected squared distance from center is

E‖x− µ‖22 = dσ2

To resolve between two d-dimensional spherical Gaussians, need
separation of 2

√
dσ between their centers

Separation requirement may be difficult to meet for huge d

Idea: project data onto a k-dimensional subspace of Rd–now
separation requirement would be

√
kσ

This k-dimensional subspace will be the span of the mean vectors
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Key ideas

Project data onto a lower dimension subspace for easier separation
condition

The best fit 1-D subspace to a spherical Gaussian is the line
through its center and the origin

The best fit k-dimensional subspace for k spherical Gaussians is
the subspace containing their centers
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Best fit subspace to a spherical Gaussian
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Projection onto span of means

Assume that the means µ1, . . . ,µk are known and let U be the
subspace spanned by them

Projecting the data onto U doesn’t change the separation, because
the means remain unchanged

Can use distance-based clustering in Rk which work with k
1
4

separation

In reality, we don’t know the span of the means
Find a projection such that the location of the mean vectors is
preserved
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Span of means and SVD

Let V ⊂ Rd be the span of top k singular vectors of data matrix
X ∈ Rm×d

If we project rows of X onto V , then separation between mean
vectors is approximately preserved: V behaves in the same way as
U

For a vector v, let projW v denote its projection onto subspace W
For a matrix M , let projWM is a matrix whose rows are the rows
of M projected onto W

9 / 14



Span of means and SVD

Facts
V is the subspace that maximizes ‖projWA‖ among all
k-dimensional subspaces W

U is the subspace that maximizes E‖projWA‖

Connecting U and V

On average, the best k-dimensional subspace approximating X is
U = span{µ1, . . . ,µk}

With large probability, the the space spanned by the top k singular
vectors of X approximates U well
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Concentration result

For a sufficiently large sample from a mixture of Gaussians, with
high probability the subspace found by SVD is very close to the
one spanned by the mean vectors

First show that for an arbitrary subspace W,
Show P(‖projWA‖2 > (1 + ε)E‖projWA‖2) < ke

−ε2mk
8

Proof uses χ2 concentration
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Main result

Let the rows of X ∈ Rm×d be sampled from a mixture of
Gaussians with unifrom weights, means µ1, . . . ,µk and variance σ.
Let V ⊂ Rd be the subspace spanned by the top k singular vectors
of X and let U be the span of the means. Then, for ε ∈ (0, 1

2), if

m ≥ ck

ε2
+
(
d ln d

ε
+ d

d− k
ln k
δ

)
,

we have w.p. 1− δ

‖projUEX‖2 − ‖projV EX‖2 ≤ εmσ2
(
d

k
− 1

)
. (1)

Shows that ‖µi − µ
′
i‖ is small, where µ

′
i are the projected means
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Other approaches

Algorithms based on random projections

Algorithms that combine projection idea and EM

Distribution learning: output a mixture distribution that
minimizes a certain loss

Separation criterion required for all clustering algorithms, not
necessary for learning
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