Spectral Graph Theory

Lekshmi Ramesh

Indian Institute of Science Bangalore

August 31, 2019

• Explores connections between linear algebra and graph theory

Explores connections between linear algebra and graph theoryVarious graph properties have linear algebraic interpretations

- Explores connections between linear algebra and graph theory
- Various graph properties have linear algebraic interpretations
- Several applications: clustering, clique detection, pagerank, graph property testing

Graphs and associated matrices

• A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set
- Throughout, we let |V| = n and restrict to undirected graphs

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set
- \blacksquare Throughout, we let |V|=n and restrict to undirected graphs
- Matrices associated with a graph

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set
- \blacksquare Throughout, we let |V|=n and restrict to undirected graphs
- Matrices associated with a graph
 - Adjacency matrix $A \in \{0,1\}^n$ with $A_{ij} = 1$ if $(i,j) \in E,$ otherwise $A_{ij} = 0$

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set
- Throughout, we let |V| = n and restrict to undirected graphs
- Matrices associated with a graph
 - Adjacency matrix $A \in \{0,1\}^n$ with $A_{ij} = 1$ if $(i,j) \in E$, otherwise $A_{ij} = 0$
 - Degree matrix D: an $n \times n$ diagonal matrix with $D_{ii} = \sum_{j=1}^{n} A_{ij}$

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set
- Throughout, we let |V| = n and restrict to undirected graphs
- Matrices associated with a graph
 - Adjacency matrix $A \in \{0,1\}^n$ with $A_{ij} = 1$ if $(i,j) \in E$, otherwise $A_{ij} = 0$
 - Degree matrix D: an $n \times n$ diagonal matrix with $D_{ii} = \sum_{j=1}^{n} A_{ij}$
 - Laplacian L = D A

An example

Some well-known graphs

• The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)

- The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)
- Can give information about the graph structure

- The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)
- Can give information about the graph structureConnectivity

- The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)
- Can give information about the graph structure
 - Connectivity
 - Number of paths, triangles

- The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)
- Can give information about the graph structure
 - Connectivity
 - Number of paths, triangles
 - Presence of cliques

Powers of the adjacency matrix: counting number of edges

• Let $A \in \{0,1\}^n$ be the adjacency matrix of a graph G = (V, E)and a_i be its columns. Then

$$(A^2)_{ii} = (A^\top A)_{ii}$$

= $||a_i||_2^2 = d_i$

whre d_i is the degree of node i

Powers of the adjacency matrix: counting number of edges

• Let $A \in \{0,1\}^n$ be the adjacency matrix of a graph G = (V, E)and a_i be its columns. Then

$$(A^2)_{ii} = (A^\top A)_{ii}$$

= $||a_i||_2^2 = d_i$

whre d_i is the degree of node i

This gives

$$\operatorname{Tr}(A^2) = \sum_{i=1}^n d_i = 2|E|$$

• Number of paths N_{ij} of length 2 between nodes i and j:

$$N_{ij} = \sum_{l=1}^{n} a_{il} a_{jl}$$
$$= a_i^{\top} a_j$$
$$= (A^2)_{ij}$$

• Number of paths N_{ij} of length 2 between nodes i and j:

$$N_{ij} = \sum_{l=1}^{n} a_{il} a_{jl}$$
$$= a_i^{\top} a_j$$
$$= (A^2)_{ij}$$

In general $(A^k)_{ij}$ counts the number of paths of length k between nodes i and j

• Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. Its adjacency matrix has the form

$$A = \begin{bmatrix} 0 & B \\ B^{\top} & 0 \end{bmatrix}$$

• Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. Its adjacency matrix has the form

$$A = \begin{bmatrix} 0 & B \\ B^{\top} & 0 \end{bmatrix}$$

• The spectrum of a bipartite graph is symmetric around zero

• Let λ be an eigenvalue of A with eigenvector v. Also, let $|V_1| = k$

• Let λ be an eigenvalue of A with eigenvector v. Also, let $|V_1| = k$

• Let
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 with $v_1 \in \mathbb{R}^k$ and $v_2 \in \mathbb{R}^{n-k}$

• Let λ be an eigenvalue of A with eigenvector v. Also, let $|V_1| = k$

• Let
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 with $v_1 \in \mathbb{R}^k$ and $v_2 \in \mathbb{R}^{n-k}$

Then

$$Av = \begin{bmatrix} 0 & B \\ B^{\top} & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} Bv_2 \\ B^{\top}v_1 \end{bmatrix} = \lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

• Let λ be an eigenvalue of A with eigenvector v. Also, let $|V_1| = k$

• Let
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 with $v_1 \in \mathbb{R}^k$ and $v_2 \in \mathbb{R}^{n-k}$

Then

$$Av = \begin{bmatrix} 0 & B \\ B^\top & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} Bv_2 \\ B^\top v_1 \end{bmatrix} = \lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

This gives

$$A \begin{bmatrix} -v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 & B \\ B^\top & 0 \end{bmatrix} \begin{bmatrix} -v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} Bv_2 \\ -B^\top v_1 \end{bmatrix} = -\lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Graphs with clusters

• Adjacency matrix has a block diagonal structure (roughly)

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Graphs with clusters: the spectrum

 Some interesting spectral properties for the equal-sized, two component case

Graphs with clusters: the spectrum

- Some interesting spectral properties for the equal-sized, two component case
- The all ones vector is an eigenvector with eigenvalue equal to the size of each component

Graphs with clusters: the spectrum

- Some interesting spectral properties for the equal-sized, two component case
- The all ones vector is an eigenvector with eigenvalue equal to the size of each component
- The next eigenvector reveals component labels

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

 This idea can be extended to more general settings (more components, noisy observations of the adjacency matrix)

- This idea can be extended to more general settings (more components, noisy observations of the adjacency matrix)
- Has direct application to community detection in large graphs

- This idea can be extended to more general settings (more components, noisy observations of the adjacency matrix)
- Has direct application to community detection in large graphs
- Lot of recent work in analyzing spectral algorithms in the stochastic block model setting

- This idea can be extended to more general settings (more components, noisy observations of the adjacency matrix)
- Has direct application to community detection in large graphs
- Lot of recent work in analyzing spectral algorithms in the stochastic block model setting
- Several other interesting connections: graph coloring and chromatic number, grouping graphs with similar spectra

• Two-cluster case For $n \in \mathbb{N}$ and $p, q \in (0, 1)$, let $\mathcal{G}(n, p, q)$ be the class of random graphs where

Two-cluster case

For $n\in\mathbb{N}$ and $p,q\in(0,1),$ let $\mathcal{G}(n,p,q)$ be the class of random graphs where

■ each vertex v is assigned a label $\sigma_v \in \{+1, -1\}$ (independently and uniformly at random)

Two-cluster case

For $n\in\mathbb{N}$ and $p,q\in(0,1),$ let $\mathcal{G}(n,p,q)$ be the class of random graphs where

- each vertex v is assigned a label $\sigma_v \in \{+1, -1\}$ (independently and uniformly at random)
- each possible edge (u, v) is included with probability p if $\sigma_u = \sigma_v$ and with probability q if $\sigma_u \neq \sigma_v$

Clustering in networks

Figure 1: A random graph $G \sim \mathcal{G}(200, \frac{1}{20}, \frac{1}{200})$

• The expected adjacency matrix has a block structure

Clustering in networks

Figure 1: A random graph $G \sim \mathcal{G}(200, \frac{1}{20}, \frac{1}{200})$

- The expected adjacency matrix has a block structure
- For example, with n = 4:

$$\mathbb{E}[A] = \begin{bmatrix} p & p & q & q \\ p & p & q & q \\ q & q & p & p \\ q & q & p & p \end{bmatrix}$$

- Luca Trevisan. Lecture Notes on Expansion, Sparsest Cut, and Spectral Graph Theory.
- Daniel Spielman. Spectral Graph Theory, Combinatorial Scientific Computing, Chapman and Hall/CRC Press, 2011.

Thank you