Spectral Graph Theory

Lekshmi Ramesh

Indian Institute of Science Bangalore

August 31, 2019

Spectral graph theory

■ Explores connections between linear algebra and graph theory

Spectral graph theory

■ Explores connections between linear algebra and graph theory
■ Various graph properties have linear algebraic interpretations

Spectral graph theory

■ Explores connections between linear algebra and graph theory
■ Various graph properties have linear algebraic interpretations
■ Several applications: clustering, clique detection, pagerank, graph property testing

Graphs and associated matrices

■ A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set

Graphs and associated matrices

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set

■ Throughout, we let $|V|=n$ and restrict to undirected graphs

Graphs and associated matrices

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set

■ Throughout, we let $|V|=n$ and restrict to undirected graphs

- Matrices associated with a graph

Graphs and associated matrices

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set

■ Throughout, we let $|V|=n$ and restrict to undirected graphs

- Matrices associated with a graph
- Adjacency matrix $A \in\{0,1\}^{n}$ with $A_{i j}=1$ if $(i, j) \in E$, otherwise $A_{i j}=0$

Graphs and associated matrices

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set

■ Throughout, we let $|V|=n$ and restrict to undirected graphs

- Matrices associated with a graph
- Adjacency matrix $A \in\{0,1\}^{n}$ with $A_{i j}=1$ if $(i, j) \in E$, otherwise $A_{i j}=0$
- Degree matrix $D:$ an $n \times n$ diagonal matrix with $D_{i i}=\sum_{j=1}^{n} A_{i j}$

Graphs and associated matrices

- A graph G is the pair (V, E) where V is a set called the vertex set and $E \subseteq V \times V$ is the edge set

■ Throughout, we let $|V|=n$ and restrict to undirected graphs

- Matrices associated with a graph
- Adjacency matrix $A \in\{0,1\}^{n}$ with $A_{i j}=1$ if $(i, j) \in E$, otherwise $A_{i j}=0$
- Degree matrix D : an $n \times n$ diagonal matrix with $D_{i i}=\sum_{j=1}^{n} A_{i j}$
- Laplacian $L=D-A$

An example

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad D=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad L=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Some well-known graphs

Complete graph
Star graph
5

$A=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$
$A=\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right]$
$A=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

The spectrum of a graph

- The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)

The spectrum of a graph

- The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)
- Can give information about the graph structure

The spectrum of a graph

■ The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)

- Can give information about the graph structure
- Connectivity

The spectrum of a graph

■ The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)

- Can give information about the graph structure
- Connectivity
- Number of paths, triangles

The spectrum of a graph

■ The spectrum of a graph is the spectrum of its adjacency matrix (or Laplacian)

- Can give information about the graph structure
- Connectivity
- Number of paths, triangles
- Presence of cliques

Powers of the adjacency matrix: counting number of edges

- Let $A \in\{0,1\}^{n}$ be the adjacency matrix of a graph $G=(V, E)$ and a_{i} be its columns. Then

$$
\begin{aligned}
\left(A^{2}\right)_{i i} & =\left(A^{\top} A\right)_{i i} \\
& =\left\|a_{i}\right\|_{2}^{2}=d_{i}
\end{aligned}
$$

whre d_{i} is the degree of node i

Powers of the adjacency matrix: counting number of edges

- Let $A \in\{0,1\}^{n}$ be the adjacency matrix of a graph $G=(V, E)$ and a_{i} be its columns. Then

$$
\begin{aligned}
\left(A^{2}\right)_{i i} & =\left(A^{\top} A\right)_{i i} \\
& =\left\|a_{i}\right\|_{2}^{2}=d_{i}
\end{aligned}
$$

whre d_{i} is the degree of node i

- This gives

$$
\operatorname{Tr}\left(A^{2}\right)=\sum_{i=1}^{n} d_{i}=2|E|
$$

Powers of the adjacency matrix: paths between nodes

- Number of paths $N_{i j}$ of length 2 between nodes i and j :

$$
\begin{aligned}
N_{i j} & =\sum_{l=1}^{n} a_{i l} a_{j l} \\
& =a_{i}^{\top} a_{j} \\
& =\left(A^{2}\right)_{i j}
\end{aligned}
$$

Powers of the adjacency matrix: paths between nodes

- Number of paths $N_{i j}$ of length 2 between nodes i and j :

$$
\begin{aligned}
N_{i j} & =\sum_{l=1}^{n} a_{i l} a_{j l} \\
& =a_{i}^{\top} a_{j} \\
& =\left(A^{2}\right)_{i j}
\end{aligned}
$$

- In general $\left(A^{k}\right)_{i j}$ counts the number of paths of length k between nodes i and j

Graph spectra: Bipartite graphs

- Let $G=\left(V_{1} \cup V_{2}, E\right)$ be a bipartite graph. Its adjacency matrix has the form

$$
A=\left[\begin{array}{cc}
0 & B \\
B^{\top} & 0
\end{array}\right]
$$

Graph spectra: Bipartite graphs

- Let $G=\left(V_{1} \cup V_{2}, E\right)$ be a bipartite graph. Its adjacency matrix has the form

$$
A=\left[\begin{array}{cc}
0 & B \\
B^{\top} & 0
\end{array}\right]
$$

■ The spectrum of a bipartite graph is symmetric around zero

Graph spectra: Bipartite graphs

■ Let λ be an eigenvalue of A with eigenvector v. Also, let $\left|V_{1}\right|=k$

Graph spectra: Bipartite graphs

■ Let λ be an eigenvalue of A with eigenvector v. Also, let $\left|V_{1}\right|=k$

- Let $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ with $v_{1} \in \mathbb{R}^{k}$ and $v_{2} \in \mathbb{R}^{n-k}$

Graph spectra: Bipartite graphs

■ Let λ be an eigenvalue of A with eigenvector v. Also, let $\left|V_{1}\right|=k$

- Let $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ with $v_{1} \in \mathbb{R}^{k}$ and $v_{2} \in \mathbb{R}^{n-k}$

■ Then

$$
A v=\left[\begin{array}{cc}
0 & B \\
B^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
B v_{2} \\
B^{\top} v_{1}
\end{array}\right]=\lambda\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Graph spectra: Bipartite graphs

■ Let λ be an eigenvalue of A with eigenvector v. Also, let $\left|V_{1}\right|=k$

- Let $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ with $v_{1} \in \mathbb{R}^{k}$ and $v_{2} \in \mathbb{R}^{n-k}$

■ Then

$$
A v=\left[\begin{array}{cc}
0 & B \\
B^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
B v_{2} \\
B^{\top} v_{1}
\end{array}\right]=\lambda\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

- This gives

$$
A\left[\begin{array}{c}
-v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & B \\
B^{\top} & 0
\end{array}\right]\left[\begin{array}{c}
-v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
B v_{2} \\
-B^{\top} v_{1}
\end{array}\right]=-\lambda\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

Graphs with clusters

- Adjacency matrix has a block diagonal structure (roughly)

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Graphs with clusters: the spectrum

■ Some interesting spectral properties for the equal-sized, two component case

Graphs with clusters: the spectrum

■ Some interesting spectral properties for the equal-sized, two component case

■ The all ones vector is an eigenvector with eigenvalue equal to the size of each component

Graphs with clusters: the spectrum

■ Some interesting spectral properties for the equal-sized, two component case

■ The all ones vector is an eigenvector with eigenvalue equal to the size of each component

- The next eigenvector reveals component labels

$$
\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1 \\
-1 \\
-1
\end{array}\right]=3\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1 \\
-1 \\
-1
\end{array}\right]
$$

Clustering in networks

■ This idea can be extended to more general settings (more components, noisy observations of the adjacency matrix)

Clustering in networks

■ This idea can be extended to more general settings (more components, noisy observations of the adjacency matrix)

- Has direct application to community detection in large graphs

Clustering in networks

■ This idea can be extended to more general settings (more components, noisy observations of the adjacency matrix)

- Has direct application to community detection in large graphs

■ Lot of recent work in analyzing spectral algorithms in the stochastic block model setting

Clustering in networks

■ This idea can be extended to more general settings (more components, noisy observations of the adjacency matrix)

- Has direct application to community detection in large graphs

■ Lot of recent work in analyzing spectral algorithms in the stochastic block model setting

- Several other interesting connections: graph coloring and chromatic number, grouping graphs with similar spectra

The stochastic block model

■ Stochastic Block Model (SBM): A generative model for graphs with clusters

The stochastic block model

■ Stochastic Block Model (SBM): A generative model for graphs with clusters

■ Two-cluster case
For $n \in \mathbb{N}$ and $p, q \in(0,1)$, let $\mathcal{G}(n, p, q)$ be the class of random graphs where

The stochastic block model

■ Stochastic Block Model (SBM): A generative model for graphs with clusters

- Two-cluster case For $n \in \mathbb{N}$ and $p, q \in(0,1)$, let $\mathcal{G}(n, p, q)$ be the class of random graphs where
- each vertex v is assigned a label $\sigma_{v} \in\{+1,-1\}$ (independently and uniformly at random)

The stochastic block model

■ Stochastic Block Model (SBM): A generative model for graphs with clusters

- Two-cluster case For $n \in \mathbb{N}$ and $p, q \in(0,1)$, let $\mathcal{G}(n, p, q)$ be the class of random graphs where
- each vertex v is assigned a label $\sigma_{v} \in\{+1,-1\}$ (independently and uniformly at random)
- each possible edge (u, v) is included with probability p if $\sigma_{u}=\sigma_{v}$ and with probability q if $\sigma_{u} \neq \sigma_{v}$

Clustering in networks

Figure 1: A random graph $G \sim \mathcal{G}\left(200, \frac{1}{20}, \frac{1}{200}\right)$
■ The expected adjacency matrix has a block structure

Clustering in networks

Figure 1: A random graph $G \sim \mathcal{G}\left(200, \frac{1}{20}, \frac{1}{200}\right)$
■ The expected adjacency matrix has a block structure

- For example, with $n=4$:

$$
\mathbb{E}[A]=\left[\begin{array}{llll}
p & p & q & q \\
p & p & q & q \\
q & q & p & p \\
q & q & p & p
\end{array}\right]
$$

References

- Luca Trevisan. Lecture Notes on Expansion, Sparsest Cut, and Spectral Graph Theory.
■ Daniel Spielman. Spectral Graph Theory, Combinatorial Scientific Computing, Chapman and Hall/CRC Press, 2011.

Thank you

