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Spectral graph theory

Explores connections between linear algebra and graph theory

Various graph properties have linear algebraic interpretations

Several applications: clustering, clique detection, pagerank, graph
property testing
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Graphs and associated matrices

A graph G is the pair (V,E) where V is a set called the vertex set
and E ⊆ V × V is the edge set

Throughout, we let |V | = n and restrict to undirected graphs

Matrices associated with a graph

Adjacency matrix A ∈ {0, 1}n with Aij = 1 if (i, j) ∈ E, otherwise
Aij = 0

Degree matrix D: an n× n diagonal matrix with Dii =
∑n

j=1 Aij

Laplacian L = D −A
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An example

A =


0 1 0 0
1 0 1 0
0 1 0 0
0 0 0 0

 D =


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0

 L =


1 −1 0 0
−1 2 −1 0
0 −1 1 0
0 0 0 0


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Some well-known graphs
Complete graph Star graph Bipartite graph

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 A =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 A =



0 0 0 1 1 1
0 0 0 1 1 0
0 0 0 0 1 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0


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The spectrum of a graph

The spectrum of a graph is the spectrum of its adjacency matrix
(or Laplacian)

Can give information about the graph structure

Connectivity
Number of paths, triangles
Presence of cliques
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Powers of the adjacency matrix: counting number of
edges

Let A ∈ {0, 1}n be the adjacency matrix of a graph G = (V,E)
and ai be its columns. Then

(A2)ii = (A>A)ii

= ‖ai‖22 = di

whre di is the degree of node i

This gives

Tr(A2) =
n∑

i=1
di = 2|E|
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Powers of the adjacency matrix: paths between nodes

Number of paths Nij of length 2 between nodes i and j:

Nij =
n∑

l=1
ailajl

= a>i aj

= (A2)ij

In general (Ak)ij counts the number of paths of length k between
nodes i and j
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Graph spectra: Bipartite graphs

Let G = (V1 ∪ V2, E) be a bipartite graph. Its adjacency matrix
has the form

A =
[

0 B
B> 0

]

The spectrum of a bipartite graph is symmetric around zero
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Graph spectra: Bipartite graphs

Let λ be an eigenvalue of A with eigenvector v. Also, let |V1| = k

Let v =
[
v1
v2

]
with v1 ∈ Rk and v2 ∈ Rn−k

Then

Av =
[

0 B
B> 0

] [
v1
v2

]
=

[
Bv2
B>v1

]
= λ

[
v1
v2

]

This gives

A

[
−v1
v2

]
=

[
0 B
B> 0

] [
−v1
v2

]
=

[
Bv2
−B>v1

]
= −λ

[
v1
v2

]
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Graphs with clusters

Adjacency matrix has a block diagonal structure (roughly)

A =



0 1 1 0 1 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
1 0 0 1 0 1
0 0 0 1 1 0


11 / 17



Graphs with clusters: the spectrum

Some interesting spectral properties for the equal-sized, two
component case

The all ones vector is an eigenvector with eigenvalue equal to the
size of each component

The next eigenvector reveals component labels

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1





1
1
1
−1
−1
−1


= 3



1
1
1
−1
−1
−1


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Clustering in networks

This idea can be extended to more general settings (more
components, noisy observations of the adjacency matrix)

Has direct application to community detection in large graphs

Lot of recent work in analyzing spectral algorithms in the
stochastic block model setting

Several other interesting connections: graph coloring and
chromatic number, grouping graphs with similar spectra
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The stochastic block model

Stochastic Block Model (SBM): A generative model for graphs
with clusters

Two-cluster case
For n ∈ N and p, q ∈ (0, 1), let G(n, p, q) be the class of random
graphs where

each vertex v is assigned a label σv ∈ {+1,−1} (independently and
uniformly at random)
each possible edge (u, v) is included with probability p if σu = σv

and with probability q if σu 6= σv
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Clustering in networks

Figure 1: A random graph G ∼ G(200, 1
20 ,

1
200 )

The expected adjacency matrix has a block structure

For example, with n = 4:

E[A] =


p p q q
p p q q
q q p p
q q p p


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Thank you
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