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Spectral graph theory

m Explores connections between linear algebra and graph theory
m Various graph properties have linear algebraic interpretations

m Several applications: clustering, clique detection, pagerank, graph
property testing
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Graphs and associated matrices

m A graph G is the pair (V, E) where V is a set called the vertex set
and EF CV x V is the edge set

m Throughout, we let |V| = n and restrict to undirected graphs

m Matrices associated with a graph
m Adjacency matrix A € {0,1}" with A,;; = 1 if (¢, j) € E, otherwise

m Degree matrix D: an n x n diagonal matrix with D;; = Z;;l Aij

m Laplacian L=D — A
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An example
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Some well-known graphs

Bipartite graph

Star graph

Complete graph
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The spectrum of a graph

m The spectrum of a graph is the spectrum of its adjacency matrix
(or Laplacian)
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The spectrum of a graph

m The spectrum of a graph is the spectrum of its adjacency matrix
(or Laplacian)

m Can give information about the graph structure
m Connectivity
m Number of paths, triangles

m Presence of cliques
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Powers of the adjacency matrix: counting number of
edges

m Let A € {0,1}" be the adjacency matrix of a graph G = (V, E)
and a; be its columns. Then

(A%)ii = (AT A)y

= lail3 = d;

whre d; is the degree of node i
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Powers of the adjacency matrix: counting number of
edges

m Let A € {0,1}" be the adjacency matrix of a graph G = (V, E)
and a; be its columns. Then

(A%)ii = (AT A)ii
= flaill3 = di
whre d; is the degree of node i

m This gives

Tr(A%) = d; = 2|E|
=1
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Powers of the adjacency matrix: paths between nodes

m Number of paths N;; of length 2 between nodes 7 and j:

n
Nij = aqaj
=1
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Powers of the adjacency matrix: paths between nodes

m Number of paths N;; of length 2 between nodes 7 and j:

n
Nij = aqaj
=1

m In general (A%);; counts the number of paths of length k between
nodes ¢ and j
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Graph spectra: Bipartite graphs

m Let G = (V4 UV, E) be a bipartite graph. Its adjacency matrix

has the form
0 B

9/17



Graph spectra: Bipartite graphs

m Let G = (V4 UV, E) be a bipartite graph. Its adjacency matrix

has the form
0 B

m The spectrum of a bipartite graph is symmetric around zero
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m Then
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Graph spectra: Bipartite graphs

m Let A be an eigenvalue of A with eigenvector v. Also, let |V1| =k
m Let v = [zll with v; € RF and vy € R?F

2
m Then
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m This gives
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Graphs with clusters
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m Adjacency matrix has a block diagonal structure (roughly)
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Graphs with clusters: the spectrum

m Some interesting spectral properties for the equal-sized, two
component case
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Graphs with clusters: the spectrum

m Some interesting spectral properties for the equal-sized, two
component case

m The all ones vector is an eigenvector with eigenvalue equal to the
size of each component

m The next eigenvector reveals component labels
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Clustering in networks

m This idea can be extended to more general settings (more
components, noisy observations of the adjacency matrix)
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Clustering in networks

m This idea can be extended to more general settings (more
components, noisy observations of the adjacency matrix)

m Has direct application to community detection in large graphs

m Lot of recent work in analyzing spectral algorithms in the
stochastic block model setting

m Several other interesting connections: graph coloring and
chromatic number, grouping graphs with similar spectra
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The stochastic block model

m Stochastic Block Model (SBM): A generative model for graphs
with clusters
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The stochastic block model

m Stochastic Block Model (SBM): A generative model for graphs
with clusters

m Two-cluster case
For n € N and p,q € (0,1), let G(n,p, q) be the class of random
graphs where
m each vertex v is assigned a label o, € {+1,—1} (independently and
uniformly at random)
m cach possible edge (u,v) is included with probability p if o, = o
and with probability ¢ if o, # o,
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Clustering in networks

Figure 1: A random graph G ~ G(200, 55, 565)

m The expected adjacency matrix has a block structure
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Clustering in networks

Figure 1: A random graph G ~ G(200, 55, 565)

m The expected adjacency matrix has a block structure

m For example, with n = 4:

E[A] =

ESEESTR < IS
SIS S B
"R R
"R R
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