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PAC Learning: Introduction

Probably Approximately Correct learning: A model of learning

Seeks to find algorithms that try to learn a concept (e.g.
classifying emails as spam/not spam) from labeled examples

Goal of the algorithm is to approximate the true concept with
high probability over training samples
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PAC Learning: Some terminology

Input space/Domain: The set X of objects that we wish to
label/classify

Output space/Label set: A set Y that describes the labels

Data generation process: An unknown distribution D on X
generates sample x which is then labeled by the “true” labeling
function f to get label y = f(x)

Training data: The input S to the learning algorithm consisting of
iid samples {(xi, yi)}ni=1 from Dn
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PAC Learning: Some terminology

Concept class: The set C of all target functions f : X → Y that
could have generated the samples

Hypothesis class: The set H of all possible hypotheses h : X → Y
that the algorithm can choose from
e.g. linear classifiers parameterized by θ:
H = {hθ : hθ(x) = 1{θ>x≥0}}
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Assessing a learning algorithm

Generalization error/True error of h

LD,f (h) = Px∼D(h(x) 6= f(x))
= D({x : h(x) 6= f(x)})

Cannot compute since D unknown

Training error/empirical risk as

LS(h) = 1
|S|

∑
i∈S

1{h(xi) 6=yi}

This is the fraction of samples misclassified by the algorithm
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An example

Let X = {0, 1}n and D = Unif(X )

Let the true labeling function be f and f(x) ∼ Ber(1/2) for all
x ∈ X

Given training data S = {xi, yi}mi=1, the algorithm outputs
hypothesis h where

h(x) =
{
yi, if x = xi for some i ∈ S
Z, otherwise

where Z ∼ Ber(1/2)

What is the training error and true error of this hypothesis?
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An example

On the training set, there is no error

True error

LS(h) =Pr (h(x) 6= f(x)|x ∈ S) Pr (S)
+ Pr (h(x) 6= f(x)|x ∈ X\S) Pr (X\S)

= 1
2

(2n −m
2n

)
For m small, this can be bad

To avoid overfitting, we restrict the search space to certain
hypothesis classes: Empirical risk minimization

arg min
h∈H

LS(h)

7 / 13



An example

On the training set, there is no error

True error

LS(h) =Pr (h(x) 6= f(x)|x ∈ S) Pr (S)
+ Pr (h(x) 6= f(x)|x ∈ X\S) Pr (X\S)

= 1
2

(2n −m
2n

)

For m small, this can be bad

To avoid overfitting, we restrict the search space to certain
hypothesis classes: Empirical risk minimization

arg min
h∈H

LS(h)

7 / 13



An example

On the training set, there is no error

True error

LS(h) =Pr (h(x) 6= f(x)|x ∈ S) Pr (S)
+ Pr (h(x) 6= f(x)|x ∈ X\S) Pr (X\S)

= 1
2

(2n −m
2n

)
For m small, this can be bad

To avoid overfitting, we restrict the search space to certain
hypothesis classes: Empirical risk minimization

arg min
h∈H

LS(h)

7 / 13



An example

On the training set, there is no error

True error

LS(h) =Pr (h(x) 6= f(x)|x ∈ S) Pr (S)
+ Pr (h(x) 6= f(x)|x ∈ X\S) Pr (X\S)

= 1
2

(2n −m
2n

)
For m small, this can be bad

To avoid overfitting, we restrict the search space to certain
hypothesis classes: Empirical risk minimization

arg min
h∈H

LS(h)

7 / 13



PAC learnability

A concept class C is PAC learnable using hypothesis class H if, for
all f ∈ C, ε > 0, δ > 0 and all distributions Dn, there exists an
algorithm that produces hypothesis h ∈ H such that the following
holds:

PS∈Dn(LD,f (h) ≥ ε) ≤ δ.

True error of the hypothesis is small with high probability
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Questions

Generalization bounds
Can we bound the true error of a hypothesis given its training
error?

PAC learnability
Can we find hypotheses that have small true error with high
probability?

Sample complexity
How many training samples are needed for PAC learnability (for a
given concept)?
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Learning an interval

Let X = R and the true concept be fa(x) = 1{0≤x≤a} for some
a ∈ R

Given {xi, yi}ni=1, let
â = max

i: yi=1
xi

Let [c, a] be an interval that has probability ε. Our hypothesis
hâ(x) = 1{0≤x≤â} has true error less than ε if we see at least on
example from [c, a]
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Learning an interval

Thus, LS(hâ) ≥ ε if all n examples lie outside [c, a]

Pr (LS(hâ) ≥ ε) = (1− ε)n ≤ e−nε

This can be made small for sufficiently large n

n ≥ 1
ε

ln 1
δ
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PAC learnability for finite hypothesis space

Realizability: For some h ∈ H, LD,f (h) = 0

hS is the output of ERM

Let H be a finite hypothesis class, 0 < δ, ε < 1 and

n ≥ 1
ε

ln |H|
δ
.

Then, for any concept f and any distribution D for which
realizability holds, with probability 1− δ over training samples S
of size n, it holds that

LD,f (hS) ≤ ε.
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