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Multilinear Compressed Sensing

Goal
Aim is to evaluate how far the deep linear network architectures
used in applications are from architectures for which one can
guarantee that the parameters returned by the algorithm, and
therefore the features defined using these parameters, are stably
defined.

Results
I Derived a necessary and sufficient conditions on the network

topology under which a stability property holds.

I The stability property requires that the error on the
parameters defining the near-optimal factors scales linearly
with the reconstruction error (i.e., the risk).

I Under stability conditions on the network topology, any
successful learning task leads to stably defined features that
can be interpreted.



The Road Map

I First evaluate how the Segre embedding and its inverse distort
distances.

I Any deep structured linear network can be cast as a generic
multilinear problem that uses the Segre embedding. This is
the tensorial lifting.

I Using the tensorial lifting, a necessary and sufficient condition
for the identifiability of the factors up to a scale
rearrangement.

I Finally provide a necessary and sufficient condition called the
deep-Null Space Property (because of the analogy with the
usual Null Space Property in the compressed sensing
framework) which guarantees that the stability property holds.



Informal Statement of the Main Theorem
Assume a known parameterized family of functions fh and a metric
d between parameter pairs. A necessary and sufficient condition on
the family fh guaranteeing the following:
There exists a constant C > 0 such that for any input/output pairs
I ,X and any pair of parameters h∗,h for which

δ = ‖X − fh∗(I )‖

and
η =

∥∥X − fh(I )
∥∥

are sufficiently small, one have

d
(
h̄, h∗

)
≤ C (δ + η) (1)

I Inequality (1) therefore guarantees that the set made of the
parameters leading to a small risk has a small diameter. The
features defined using such parameters are therefore stably
defined.



Deep Structured Linear Networks
I Consider an arbitrary depth parameter K ≥ 1. The number of

layers is K + 1, and the layer receiving the input is K + 1 and
the layer returning the output is 1.

I Let m1 . . .mK+1 ∈ N s.t. m1 = m and mK+1 = n. For
k = 1, . . . ,K , consider the linear map

Mk : RS −→ Rmk×mk+1

h 7−→ Mk(h)

I Given some parameters, h1, . . . , hK ∈ RS , the action of the
deep structured linear network is the product
M1 (h1) · · ·MK (hK ) .

I MK (hK ) = M ′K (hK ) I for a linear map M ′K and for a matrix I
whose columns contain the inputs.

I Given outputs X ∈ Rm×n, the optimization of the parameters
h1, . . . , hK defining the network aims at getting

M1 (h1) · · ·MK (hK ) ' X



Structure on MK

I To model feed-forward linear networks, the mappings
Mk , k = 1, . . . ,K − 1 (and M ′K ) construct the matrix by
placing the entry of hk corresponding to an edge in the
network in the corresponding entry in Mk (hk) .

I For convolutional layers, Mk and M ′K concatenate convolution
matrices’ defined by a portion of the entries in hk . Each
convolution matrix is at the location corresponding to a
prescribed edge.

I The main argument for studying deep structured linear
networks is due to their strong connection to nonlinear
networks that uses the rectified linear unit (ReLU) ”
activation function. We explain it in detail. The action of the
ReLU activation function at the layer k treats every entry
independently of the other entries and multiplies it by either 1
(the entry is kept) or 0 (the entry is canceled).



Structure on h

I In addition to the structure induced by the operators Mk , we
also consider a structure imposed on the vectors h We assume
that we know a collection of models M =

(
ML

)
L∈N with the

property that for every L,ML ⊂ RS×K is a given subset. We
will assume that the parameters h ∈ RS×K defining the
factors are such that there exists L ∈ N such that h ∈ML.

I For instance, the constraint h ∈ML might be used to impose
sparsity, grouped sparsity, or cosparsity. One might also use
the constraint h ∈ML to impose nonnegativity, orthogonality,
equality, compactness, etc. Generally speaking M is used to
impose some prior or some form of regularity or to compress
the parameter space and obtain better bounds.



Matrix Factorization and Compressed Sensing

I In signal processing, one usually know that h̄ exists and δ
represents the sum of a modeling error and noise. Inequality
(1) guarantees that when the condition is satisfied, even an
approximative minimizer of

argminL∈N,(hk )k=1..K∈ML ‖M1 (h1) · · ·MK (hK )− X‖2 (2)

leads to a solution h∗ close h̄. This property is often named
the stable recovery guarantee.

I When δ = 0 (i.e., the data exactly fits the model and is not
noisy) and η = 0 (i.e., (2) is perfectly solved) this
identifiability guarantee. This is a necessary condition of
stable recovery.

I K = 1 : Linear inverse problems, K = 2 : Bilinear inverse
problems and bilinear parameterizations (For example:
Nonnegative matrix factorization and low rank prior, Phase
retrieval, Sparse coding and dictionary learning)



Notations

I T ∈ RSK
: real-valued tensors of order K whose axes are of

size S for K ≥ 1 and S ≥ 2, RSK
: space of tensors, Ti1...iK :

The entries of T , where (i1, . . . , iK ) ∈ [S ]K .

I h ∈ RS×K : the parameters defining the factors are gathered
in a single matrix, hk ∈ RS : The k th vector containing the
parameters for the layer k, hk,i ∈ R : The i th entry of the k
th vector h ∈ RS : A vector not related to an element in
RS×K

I M =
(
ML

)
L∈N , with ML ⊂ RS×K

I h ∈ RS×K and T ∈ RSK
, p < +∞

‖h‖p =
(∑K

k=1

∑S
i=1 |hk,i |

p
)1/p

, ‖T‖p =
(∑

i∈[S]K |Ti|p
)1/p

I ‖h‖∞ = max k∈[K ]
i∈[S]

|hk,i | , ‖T‖∞ = maxi∈[S]K |Ti|



Continue ...

I Set RS×K
∗ =

{
h ∈ RS×K |∀k ∈ [K ], ‖hk‖ 6= 0

}
I Define an equivalence relation on RS×K

∗ : For any
h, g ∈ RS×K ,h ∼ g if and only if there exist (λk)k∈[K ] ∈ RK

such that

K∏
k=1

λk = 1 and hk = λkgk ∀k ∈ [K ]

Denote the equivalence class of h ∈ RS×K
∗ by 〈h〉



Rank of a Tensor

I The zero tensor is of rank 0. A nonzero tensor T ∈ RSK
is of

rank 1 (or decomposable) if and only if there exists h ∈ RS×K
∗

such that T is the outer product of the vectors hk for
k ∈ [K ]. That is, for any i ∈ [S ]K ,

Ti = h1,i1 · · ·hK ,iK .

Let Σ1 ⊂ RSK
denote the set of tensors of rank 0 or 1.

I The rank of a tensor T ∈ RSK
is

rk (T ) = min {r ∈ N|∃T1, . . . ,Tr ∈ Σ1 s.t. T = T1 + · · ·+ Tr}

I For r ∈ N, let Σr =
{
T ∈ RSK | rk(T ) ≤ r}



Segre embedding and tensors of rank 1 and 2

P : RS×K −→ Σ1 ⊂ RSK

h 7−→ (h1,i1h2,i2 · · ·hK ,iK )i∈[S]K

The map P is called the Segre embedding and is often denoted
Ŝeg in the algebraic geometry literature.

I Identifiability of 〈h〉 from P(h) : For h and g ∈ RS×K
∗ ,

P(h) = P(g) if and only if 〈h〉 = 〈g〉
I Geometrical description of Σ1,∗ : Σ1,∗ is a smooth (i.e., C∞)

manifold of dimension K (S − 1) + 1

I RS×K
diag =

{
h ∈ RS×K

∗ |∀k ∈ [K ], ‖hk‖∞ = ‖h1‖∞
}

For any p ∈ [1,∞], define the mapping
dp :

(
RS×K
∗ / ∼ ×RS×K

∗ / ∼
)
→ R by

dp(〈h〉, 〈g〉) = inf
h′∈〈h〉∩RS×K

diag ,g
′∈〈g〉∩RS×K

diag

∥∥h′ − g′
∥∥
p
∀h, g ∈ RS×K

∗

I For any p ∈ [1,∞], dp is a metric on RS×K
∗ / ∼



Continue ...

Theorem
(stability of 〈h〉 from P(h)) Let h and g ∈ RS×K

∗ be such that
‖P(g)− P(h)‖∞ ≤ 1

2 max (‖P(h)‖∞, ‖P(g)‖∞) . Then for all
p, q ∈ [1,∞],

dp(〈h〉, 〈g〉) ≤ 7(KS)
1
p min

(
‖P(h)‖

1
K
−1
∞ , ‖P(g)‖

1
K
−1
∞

)
‖P(h)−P(g)‖q

Theorem
(“Lipschitz continuity”” of P) For any q ∈ [1,∞] and any h and
g ∈ RS×K

∗ ,

‖P(h)−P(g)‖q ≤ S
K−1
q K 1− 1

q max

(
‖P(h)‖1− 1

K∞ , ‖P(g)‖1− 1
K∞

)
dq(〈h〉, 〈g〉)



The Tensorial Lifting
I Let Mk , k ∈ [K ], be as in (1). The entries of the matrix

M1 (h1)M2 (h2) · · ·MK (hK )

are multivariate polynomials whose variables are the entries of
h ∈ RS×K . Moreover, every entry is the sum of monomials of
degree K . Each monomial is a constant times h1,i ,i · · ·hK ,iK
for some i ∈ [S ]K .

I (tensorial lifting). Let Mk , k ∈ [K ] be as in (1.2). The map

(h1, . . . ,hK ) 7−→ M1 (h1)M2 (h2) · · ·MK (hK )

uniquely determines a linear map

A : RSK −→ Rm×n

such that for all h ∈ R×K ,

M1 (h1)M2 (h2) · · ·MK (hK ) = AP(h). (3)

We call (3) and its use the tensorial lifting.



Continue ...
Using (3) when (2) has a minimizer, we rewrite it in the form

h∗ ∈ argminL∈N,h∈ML ‖AP(h)− X‖2 (4)

We now decompose this problem into two subproblems: a
least-squares problem,

T ∗ ∈ argminT∈RSK ‖AT − X‖2 (5)

and a nonconvex problem,

h′∗ ∈ argminL∈N,h∈ML ‖A (P(h)− T ∗)‖2 (6)

Let X and A be such that (2) has a minimizer:

I Let h∗ be a solution of (4) Then, for any solution T ∗ of (5)
h∗ also minimizes (6)

I Let T ∗ be a solution of (5) and h′∗ solution of (6). Then h′∗

also minimizes (4).



Identifiability (error-free case)

Assume that X is such that there exist L̄ and h ∈ML̄ such that

X = M1

(
h1

)
· · ·MK

(
hK
)

(7)

Under this assumption, X = AP(h), so

P(h) ∈ argminT∈RSK ‖AT − X‖2

Moreover, we trivially have P(h) ∈ Σ1, and therefore h minimizes
(6) and As a consequence,(2) has a minimizer.

Definition
(identifiability). We say that 〈h〉 is identifiable if the elements of
〈h〉 are the only solutions of (2.1).

We say that M identifiable if for every L ∈ N and every
h ∈ML, 〈h〉 is identifiable.



Continue ...

I (characterization of the global minimizers) For any L∗ ∈ N
and any h’∈ML∗ , (L∗,h∗) ∈ argminL∈N,h∈M ‖AP(h)− X‖2 if
and only if

P (h∗) ∈ P(h) + Ker(A)

I Define for any L′ ∈ N

P
(
ML

)
−P

(
ML′

)
:=
{
P(h)− P(g)|h ∈ML, g ∈ML′

}
⊂ RSK

I (necessary and sufficient conditions of identifiability).

1. For any L̄ and h ∈ML̄, 〈h〉 is identifiable if and only if for
any L ∈ N (P(h) + Ker(A)) ∩ P

(
ML

)
C {P(h)}.

2. M is identifiable if and only if for any L and L′ ∈ N
Ker (A) ∩

(
P
(
ML

)
− P

(
ML′

))
⊂ {0}



Stability guarantee

I Assume that there exist L̄ and L∗ ∈ N,h ∈ML̄, and
h∗ ∈ML∗ , such that

‖M1

(
h1

)
· · ·MK

(
hK
)
− X ≤ δ (8)

and

‖M1 (h∗1) · · ·MK (h∗K )− X ≤ η (9)

for δ and η typically small.

Definition
(deep-Null Space Property). Let γ > 0 and ρ > 0. We say that
Ker (A) satisfies the deep-Null Space Property (deep-NSP) with
respect to the collection of models M with constants (γ, ρ) if for

any L and L′ ∈ N, any T ∈ P
(
ML

)
− P

(
ML′

)
satisfying

‖AT ‖ ≤ ρ and any T ′ ∈ Ker(A), we have ‖T‖ ≤ γ ‖T − T ′‖ .



Implication of deep-NSP

The deep-NSP implies that, for T ∈ P
(
ML

)
− P

(
ML′

)
close to

Ker(A) in the sense that ‖AT‖ ≤ ρ, we must have, by
decomposing T = T ′ + T ′′, with T ′ ∈ Ker(A) and T ′′ in its
orthogonal complement,

‖T‖ ≤ γ
∥∥T − T ′

∥∥ = γ
∥∥T ′′∥∥ ≤ γ

σmin

∥∥AT ′′∥∥ ≤ γ

σmin
ρ

where σmin is the smallest nonzero singular value of A. In words,
‖T‖ must be small. We can conclude that under the deep-NSP,

P
(
ML

)
− P

(
ML′

)
and

{
T ∈ RSK |‖AT ‖ ≤ ρ

}
intersect at most

in the neighborhood of 0.



Example

I If Ker(A) = {0}, then Ker(A) satisfies the deep-NSP with
respect to the model RS×K with constants (1,+∞).

I For any γ′ ≥ γ : If Ker (A) satisfies the deep-NSP with
respect to the collection of models M with constants (γ, ρ),
then Ker(A) satisfies the deep-NSP with respect tothe
collection of models M with constants (γ′, ρ) .

I For any M′ ⊂M : If Ker(A) satisfies the deep-NSP with
respect to the collection of models M with constants (γ, ρ),
then Ker(A) satisfies the deep-NSP with respect to the
collection of models M′ with constants (γ, ρ).

I In particular, if Ker(A) satisfies the deep-NSP with respect to
the model RS×K with constants (γ, ρ), it satisfies the
deep-NSP with respect to any collection of models, with
constants (γ, ρ).



Sufficient condition for the stability property

Assume Ker (A) satisfies the deep-NSP with respect to the
collection of models M and with the constants (γ, ρ). For any h∗

as in (9) with η and δ such that δ + η ≤ ρ, we have∥∥P (h∗)− P(h)
∥∥ ≤ γ

σmin
(δ + η)

where σmin is the smallest nonzero singular value of A. Moreover, if
h ∈ RS×K

∗ and γ
σmin

(δ+ η) ≤ 1
2 max

(
‖P(h)‖∞, ‖P (h∗)‖∞

)
, then

dp
(
〈h∗〉 , 〈h〉

)
≤ 7(KS)

1
p γ

σmin
min

(
‖P(h)‖

1
K∞, ‖P (h∗)‖

1
K
−1
∞

)
(δ + η)

(10)



Necessary condition for the stability property

Assume the stability property holds: There exist C and δ > 0 such
that for any L̄ ∈ N,h ∈ML̄, any X = AP(h) + e, with ‖e‖ ≤ δ,
any L∗ ∈ N, and any h’ ∗ ∈ML∗ such that

‖AP (h∗)− X‖2 ≤ ‖e‖

we have

d2

(
〈h∗〉 , 〈h〉

)
≤ C min

(
‖P(h)‖

1
K
−1
∞ , ‖P (h∗)‖

1
K
−1
∞

)
‖e‖

Then Ker (A) satisfies the deep-NSP with respect to the collection
of models M with constants

(γ, ρ) =
(
CS

K−1
2

√
Kσmax, δ

)
where σmax is the spectral radius of A.
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