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Sparse Bayesian Learning

Problem: y = Φx + n

Bayesian: Prior pdf on sparse vector x

Sparse Bayesian Learning: x ∼ N (0, Γ), Γ = diag(γ).
|γ|0 = K

E : Compute p(x|y;γ(r)),Q(γ|γ(r)) = g(γ,γ(r),y)

M : Compute γ
(r+1) (1)
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Group-Sparsity

x1 xM. . .yM. . .y1 Φ N

Y = ΦX + N

M-SBL solves for X

M-step: Solutions of the M SBL problems combined
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Group-Sparsity: with and without correlation

ym = Φmxm + n, for 1 ≤ m ≤ M

y1

yM

...

Φ1

. . . n

ΦM xM

x1

...

E-step: Block (TMSBL) or Recursive (KSBL) solution

M-step: Makes use of the structure in x
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Block Sparsity

. . .. . .x12 x1M

x1 ∈ RM

x11 xB1 xB2 . . . xBM

x1 ∼ N (0, γ1B)

xB ∈ RM

xB ∼ N (0, γBB)

y = Φx + n

Algorithm: Cluster-SBL

Block-sparsity manifested through γ = [γ1, . . . , γB]
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Goal of the proposed algorithms

Breaking the problem into several sub-problems that are
similar to the original problem but smaller in size

Solve the sub-problem recursively

Combine the subproblem solutions to create a solution to
the original problem
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KSBL

Modeling correlated group sparse vectors: first order AR
model

Instead of the obtaining the MMSE solution, derive the
Kalman Filter and Smoother (KFS)

M step: Obtain γ based on KFS equations
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Algorithm

Standard EM approach: Say yobs = M(yaug), M(·) is a
many-to-one mapping. Standard EM:
Q(θ|θ(r)) = E[ℓ(θ|yaug)|yobs, θ

(r)],
θ(r+1) = arg max

θ
Q(θ|θ(r))

In the nested approach: Say yaug = [yobs, ymis1, ymis2],
yobs = M1(yaug1) and yaug1 = M2(yaug2). Define
Q1(θ|θ0) = E[ℓ(θ|yaug1)|yobs , θ0],
Q2(θ|θ0) = E[ℓ(θ|yaug2)|yobs , θ0] and
Q21(θ|θ01, θ02) = E[E[ℓ(θ|yaug2)|yaug1, θ01]|yobs, θ02]

Q21(θ|θ0, θ0) = Q2(θ|θ0)
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Nested EM algorithm

E : Q21(θ|θ
(t+ k−1

K )) = E[E[ℓ(θ|yaug2)|yaug1, θ
(t+ k−1

K )]|yobs, θ
(t)]

M : θ(t+
k
K ) = arg max

θ

Q21(θ|θ
(t+ k−1

K ))

(2)

In case of the SBL approach, θ = γ.

µt,Σt
ExEt

M-step

γ
(r+ k

K ), ρ
(r+ k

K )

γ
(r+ k

K ), ρ
(r+ k

K )

γ
(r+1)

, ρ
(r+1)

y

xm|M ,Pm|M, 1 ≤ m ≤ M

γ̂, ρ̂
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Advantages

Reduced computational complexity

Closed form expression in the M-step

Faster convergence

R. Prasad, B. D. Rao, C. R. Murthy



SBL Preliminaries
Structured Sparsity

Nested EM Algorithm

Properties
Applications

Convergence of the Nested EM approach

Theorem

Suppose {θ(t), t ≥ 0} is a sequence in the parameter space
computed with the nested EM algorithm, then ℓ(θ(t+1)) ≥ ℓ(θ(t))
for each t ≥ 0.

Proof: Sufficient to show that Q1(θ
(t+1))|θ(t)) ≥ Q1(θ

(t))|θ(t))
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Critical points

Theorem

Assuming that Q21(·) is continuous in its arguments, all limit
points of the nested EM sequence {θ(t), t ≥ 0} are critical
points of ℓ(θ|yobs).
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Rate of Convergence: Iout Vs Iin

Global rate of convergence of the nested EM approach
improves with Iin
In choosing Iin, goal is not to reach convergence, but to
make progress towards the local mode

Iin can vary between iterations

If inner EM is slow to converge, large value of Iin is better
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Application 1: Block-sparse vector recovery

. . . . . . . . .

. . . . . . . . .

x11

x11

x12

x12

x1M

x1M

xB1

xB1

xB2

xB2x21 x22 x2M. . .

xBM

xBM

x1 ∈ R
B x2 ∈ R

B xM ∈ R
B

y =
∑M

i=1 tm, tm = Φmxm + nm

yaug1 = (t,y), yaug2 = (x, t,y)
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Application 2: Joint MIMO-OFDM channel estimation
and data detection

  MAPPING
SYMBOLINPUT MIMO

ENCODER

CHANNEL 

DETECTION

TURBO
ENCODER−

OFDM MODULATOR

OFDM MODULATOR

OFDM DEMODULATOR

OFDM DEMODULATOR

JOINT

ESTIMATION
AND
DATA

   INTERLEAVER

   DEINTERLEAVER

LLR
DECODER−
TURBO

y1

yNr

BITS

{b}

OUTPUT
BITS

ĥ11, . . . , ĥNtNr

{b̂}

{c}
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MMV system model:

[y1, . . . ,yNr ]
︸ ︷︷ ︸

Y∈CN×Nr

= X(INt ⊗ F)
︸ ︷︷ ︸

Φ∈CN×LNt






h11 . . . h1Nr
...

...
hNt 1 . . . hNt Nr






︸ ︷︷ ︸

H∈CLNt×Nr

+ [v1,v2, . . . ,vNr ]
︸ ︷︷ ︸

V∈CN×Nr

, (3)

ynr =
∑Nt

nt=1 tnt nr , tnt nr = Xnt Fhntnr + vnt

yaug1 = (t,y), yaug2 = (hnr , tnr ,y)
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