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Introduction

Introduction

e High resolution array processing - radar, radio astronomy, radio
communications.

e Point target assumption is an approximation.

o Target possesses a spatial extent over a continuum of direction
of arrivals (DoAs).
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e M; Tx antennas, spacing Ay;
M, Rx antennas, spacing A,.

e Ny Doppler bins, N, range bins, N, angular bins.
e s; € CH*!: waveform transmitted by the ith Tx antenna.
e For the dth Doppler bin

si(wa) =s;i @ [1, /%, ... t-Dwd]T
Sd = [sl(wd) Sg(wd) . st(wd)]T-
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System Model

. xgk;p)(ﬂ): complex angular weighting function of the kth

source in direction 6 for the radar sweep index p, dth Doppler
bin, rth range bin.

e a(f): Tx steering vector, b(#): Rx steering vector.

e Received signal Y(P) ¢ CM-x(L+N-—1).
Y(r) —

r k, &
YD DD P Joco, {x((“”)(e)b(e)aT(Q)dQ}SdJ, +w(p),

¢ Sy=1[Sq Omxn,_1]Jdr=
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YO =yl S e X b(0.)aT (02)840, + W),

[ApprOX|mat|on xl(f) = xj,”)(e )d0].
Vectorize to get: yP = Ax(P) + w(P

A= [U1,1,1 Up12--- UNd,LV,,Na] S (CMXN.
ug,r.. = vec(b(0:)a’ (0.)S4J,),

x(P) = [Xil,gl),uxipl) 25 X/(\/F;)N ,Na]T ech

x®) is block-sparse.

P radar sweeps: Y = AX + W.



Variational Methods
®00

Variational Methods - Introduction

e Bayesian models have become increasingly important to address
long-standing theoretical questions.

e Problem of probabilistic inference: computing a conditional probability
distribution over the values of some of the nodes (the “hidden nodes”),
given the values of other nodes (“evidence” nodes).

P(H|E) = P(H,E)/P(E).

e Exact algorithms provide a satisfactory solution to inference problems,
but there are cases when time and space complexity of the exact
calculation is unacceptable. - Variational approximations.

e Markov chain Monte Carlo (MCMC): requires massive computing
resources, converge slowly and might approximate the wrong posterior.
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Variational Methods - Introduction

e Variational method- deterministic approximation procedures that
generally provide bounds on probabilities of interest.

e Intuition- complex graphs can be probabilistically simple.

e If y are the observations, x are the hidden variables, @ are the unknown
parameters ,EM involves:

E-step: Compute p(x]y; Oo1d)-
M-step: Evaluate Onew = arg maxgEyy.0.,,[In p(y,x; 0)]
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Variational Methods- Introduction

e EM requires that p(x|y; @) be explicitly known, or be able compute the
conditional expectation.

e Variational EM- Bypasses knowledge of p(x|y; 8) by assuming an
appropriate g(x) and lower-bounding the log-likelihood (F(q, )).

Variational E-step: Evaluate guew(z) to maximize F(q,0o1a)-
Variational M-step: Find Onew = arg maxgF(gnew, 0).

e Variational Garrote: Principaled approach to feature subset selection
based on variational approximation of posterior through an alternate
means of specifying prior to encourage sparsity.
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Variational EM

e Hierarchical prior model.

e Estimation of X is viewed as the estimation of
{x(p)}:j:l

e x® is, in turn, viewed as a concatenation of
several smaller blocks xﬁ,'f) € R corresponding to
bth block of range bin r; h,: size of the block in
range bin r.

e [Z. Zhang & B.D. Rao, TSP Apr. '13]
xffl satisfies p(xﬁmab,,, Bs,) ~ N(O, a;}Bb,,);
ap,r: hyperparameter controlling sparsity
B,,: positive definite matrix captures the
correlations between the elements of XS,’,)Z-
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Variational EM

N, B,
o pla) = H H Gamma(ay,|c, d)

r=1 b=1

e Marginal prob. : Inp(Y) = L(q) + KL(q || p)
= [q( @)IHL’e)dO

KL(q || p) = — [ a( enn*’(@” de
Hidden variables © = {X, a}

« 4(©) =T a(®)

e [(g) maximized when p(@|Y) = q(O).
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Variational EM

e Posterior distribution of each hidden variable computed by maximizing
L(q) while keeping other variables fixed using their most recent
distributions.

o Ingx(X) = (Inp(Y, X, a))q, (a) + constant
In go () = (In p(Y, X, a)) g, (x) + constant

e Variational EM:
Variational E-step: Given X from gx(X), compute go ().
Variational M-step: Given go (), compute X that maximizes L(q).

e Then
In gx (X) oc(In p(Y|X, ) + In p(X|x)) g, (o),

.
I [(yw) ~ ATy ax)) % (x®) (zo‘1>x(")] 7

P
P _
(C + 5) Inap,, — (d + Z(XEffZBb}Xﬁ)) Oéb,r} -

p=1
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Variational EM - Algorithm

Algorithm 1 Block VB

1: Input:
Data {y(")7 A}, p=1,2,...,P, and block sizes {hs, ha, ..., hn,}.
2: Initialize:

Set ap,, to random values, ¢ = d = 107°.
3: Repeat until [[X) — X0 < e
(a) Form <ZO> = diag{():1>7 <ZZ>7 R <ZNr>}'
(b) Compute = = (APA +X,1)7 1.
(c) Compute X = XF1AMY,
(d) Compute ap,, = 2ctP

a0 (P18, IxP))
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Variational Garrote

e Alternate Bayesian approach- uses a variational approximation for feature
subset selection.

e Computationally efficient, provides more accurate predictions than
methods like Lasso, ridge regression and the paired mean field.

e A binary variable for each unknown- provides an adaptive description of
the support.
Due to the decoupling of the estimation of the support and the unknown
vector, the VG provides excellent estimates.

e VG extended to a block-sparse recovery problem by associating a binary
selector variable with a block of the unknown vector.
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Variational Garrote

e Re-write; y(P) =" S~ sb,,Ab,,foZ +wP
Sph,r € {0, 1}
e Prior distribution on s

p(sh) = ﬂHP(Sb,rlv), p(s,r|v) = %7

r=1 b=1

~v < 0: sparse solutions.

o Likelihood of measurements:

p(Y[s,X;\) = (%) H exp {—)2\/\/1 Z ((g’}(/p))z

Nr B Ny Br,B;
=D s (D D) DD st (%) Do ex?)
r=1 b=1 r,t=1b,c=1

(0P)2 = L (y(P))Hy(P), VE,‘,’Z = LAY y®) and Dy o = LAY Ac.



Variational Methods
0000

Variational Garrote

e Posterior of X: p(X|Y,~; ) o< >, p(Y]s, X; A)p(s]7y).

e Approximation:
log 3=, p(Y s, X; M)p(s]7) > — 3, a(s) log smaviexsy = —F (@ X, A).

N, B
q(s) = [ [ [ Ja(se.r) with q(ss.r) = mo.rse.r + (1 = mo)(1 = sp.r).

r=1 b=1

e Solve for F:
Ny Br,Bt

AM
F-2" Z Z mb,,mcyt(xg'TZ)HDbc,rtx(ﬂ

2
P ryt=1b,c=1

+zr:zy:mb r(l — Mmp r)(x ) Dbb rrX p)

r=1 b=1
N, B
H H
0D e (W) D) + «W)
r=1 b=1

N, B N, B
+ Z Z (mp,dogmy,r + (1 — myp,)log(l — my,)) — Z nymb r

r—1 h—1 r—1 hb—1
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Variational Garrote

e Updates for m and x():

/

x(P) =(D )*1V(P) Vp,
AM
moc=a (1 241 S o)

D’: matrix with (t—=1N,+(c—1)B:+1:(t—1)N, + cB; rows and
(r=1)N.+(b—1)B, +1:(r—1)N, + bB, columns are
mb,rDbc,rt + (1 - mb,r)Dcc,tt(Sbcdrt-

e To learn 7, we see that the probability of sp, =1 is
p(so,r =117) = 12200 q(sp,r = 1) = ms,.

N, By v
V= 5 2oy s In (127211,,,) :

(=M, B0
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Block VG

Algorithm 2 Block VG

1: Input:
Data {y(”,A},p=1,2,..., P, and block sizes {hy, ha, ..., hy,}.
2: Initialize:

Compute vﬁj’l and Dy for rit = 1,2,... N,,b =1,2,... B, for
each r, where B, = N.Ng/hy and ¢ = 1,2,...,B; for each t, where B; =
N,Ng/he; set mp, to random values. Set the initial value of D’ from M,

3: Repeat until |[m) —m®||, < e
(a) Update xP) and m,.
(b) Update ~.
(c) Compute the matrix D’ using the latest values of M,
(d) Update m for the current iteration: m(*Y) = [my 1, may, ..., mey, N, ]-
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My=5 M, =5, N, =12, N, = 61(730o : 30°)’ Nd =11, P =50.

Range-angle, Doppler bin #5 - Block VG

05- I Support estimate
° True

Range bin

Angle (deg)

(i) Support estimate.
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(ii) RMSE of central angle estimate
versus SNR.
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Conclusion

Extended source localization problem in radar/sonar - joint estimation of
angle, spread, Doppler and range.

e Block-sparse MMV problem with common support across radar sweeps.

e Two methods - variational EM and variational Garrote.

Future work - plot CRB-type bounds for the two variational methods
- analysis of convergence of these algorithms.
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