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Introduction

IoT to connect massive machines and devices in the future
communication networks

Short-packet with finite blocklength codes is considered to
reduce the transmission latency

Decoding error probability is not negligible since the
blocklength is small
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NOMA

NOMA schemes rely on a key assumption that the users’
channel conditions are very different.

Within the NOMA user pair, one user is assumed to be
deployed close to the base station, and the other is far away
from the base station

NOMA offers great potential to achieve low-latency by serving
multiple users simultaneously
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System Model

Consider that two users, ui , i ∈ 1, 2 are paired to perform
NOMA

Let |h1|2 ≥ |h2|2

αi , the power allocation coefficient satisfying α1 ≤ α2 and,
α1 + α2 = 1

The received signals at ui is given by

yi = hi

(√
α1Ps1 +

√
α2Ps2

)
+ ni (1)
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Cont.

At u2, it decodes s2 directly by treating s1 as interference.

Then the received SINR of decoding s2 at u2 is given by

γ22 = α2|h2|2/
(
α1|h2|2 + 1/ρ

)
(2)

where ρ = P/σ2 is the transmit signal-to-noise ratio (SNR).
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Cont.

Given the blocklength m, the number of data bits Ni to ui ,
the Shannon capacity C (x) = log2(1 + x) and the channel
dispersion V (x)

The instantaneous BLER of decoding s2 at u2, denoted by ε2,

ε2 = ε22 ≈ Q

(
C (γ22)− N2

m√
V (γ22/m)

)
= ϕ(γ22,N2,m) (3)

The received SINR of decoding s2 at u1 is given by

γ12 = α2|h1|2/
(
α1|h1|2 + 1/ρ

)
(4)

ε12 ≈ ϕ(γ12,N2,m) (5)
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Cont.

If s2 can be successfully decoded and removed, u1 then can
decode s1 in an interference-free manner with

γ11 = α1|h1|2ρ (6)

ε1 ≈ ϕ(γ11,N1,m) (7)

the instantaneous overall BLER at u1 can be approximated as

ε1 = ε12 + (1− ε12)ε11 ≈ ε12 + ε11 (8)
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Problem Statement

To reduce the blocklength,

P : m∗ = min
α1,α2

M(α1, α2) (9)

s.t. ε̄i ≤ ε̄thi , i ∈ {1, 2} (10)

0 < αi < 1, α1 + α2 = 1 (11)

Noting that α1 = 1− α2, ε̄i is a decreasing function of m, we
simplify above problem as

P : m∗ = min
α1

M(α1) (12)

s.t. ε̄i = ε̄thi , i ∈ {1, 2} (13)

0 < α1 < 1 (14)
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Problem Solution

Closed-form expression of the average BLER ε̄ij ,

ε̄ij ≈
∫ ∞
0

Q

(
C (γ22)− N2

m√
V (γ22/m)

)
fγij (x)dx , i , j = {1, 2} (15)

By using the first order Riemann integral approximation,

ε̄2 ≈ 2β2,m/
(
λρ(α2 − α1β2,m)

)
(16)

where βj ,m = 2
Nj
m − 1
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Cont.

The minimum blocklength m2 for u2,

m2 ≈ N2/log2

((
2 + λρε̄th2

)
/

(
2 + α1λρε̄

th
2

))
(17)

Similarly, ε̄1 can be approximated as

ε̄1 ≈
(
β1,m/(λρα1)

)2
+ (ε̄th2 )2 (18)

The minimum blocklength m1 for u1,

m1 ≈ N1/log2

(
1 + α1λρ

√
ε̄th1 − (ε̄th2 /2)2

)
(19)
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Cont.

Lemma 1: The optimal power allocation coefficient α∗1 can
be solved under the condition that m1 = m2.

The optimal power allocation coefficient α∗1 can be
approximated as

α∗1 ≈

(((
2 + λρε̄th2

)
/2

)N1
N2

− 1

)
/

(
λρ
√
ε̄th1

)
(20)

The minimum common blocklength to guarantee the target
average reliability of users,

m∗ ≈ N2/log2

((
2 + λρε̄th2

)
/

(
2 + α∗1λρε̄

th
2

))
(21)
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Comparison with OMA

In conventional OMA (e.g., TDMA) systems, the minimum
sum blocklength m̂∗ is the summation of m̂i for i ∈ {1, 2}

m̂1 ≈ N1/log2

(
1 + λρ

√
ε̄th1

)
(22)

m̂2 ≈ N2/log2

((
2 + λρε̄th2

)
/2

)
(23)

The blocklength reduction of NOMA compared to OMA can
be characterized as

4m = m̂∗ −m∗ ≈ N1/log2

(
1 + λρ

√
ε̄th1

)
= m̂1 (24)
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Remarks

Given the reliability constraints, OMA needs m̂1 + m̂2 channel
uses to serve u1 and u2. However, in NOMA, by properly
optimizing the power allocation among the served users, only
m̂2 channel uses are needed to serve u1 and u2 simultaneously.
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Another Problem

Effective throughput at ui is defined by

T̄i =
Ni

N
Ri (1− ε̄i ) (25)

Transmission rate at ui can be approximated by

Ri ≈ log2(1 + γi )−

√
Vi

Ni

Q−1(εi )

ln2
(26)

where Vi is the channel dispersion
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Cont.

For a given transmission rate Ri , the decoding error
probability at user i is approximated by

εi ≈ Q(f (γi ,Ni ,Ri )) (27)

where f (γi ,Ni ,Ri ) =ln2
√

Ni
1−(1+γi )−2 (log2(1 + γi )− Ri )
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Cont.

Optimization problem
max
4

T̄1 (28)

T̄2 ≥ T0 (29)

P1N1 + P2N2 ≤ PN (30)

N1 = N2 = N, for NOMA (31)

N1 + N2 = N, for OMA (32)
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Cont.

Optimization problem for NOMA

max
4

T̄1 (33)

P1 + P2 ≤ P (34)

T̄2 ≥ T0 (35)

The effective throughput at u1 is given by

T̄1 = R1(1− ε1 + ε1ε
1
2 − ε12ε

′
1) (36)

The effective throughput at u2 is given by

T̄1 = R2(1− ε2) (37)
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Cont.

Lemma 1:The equality in the power constraint, i.e.,
P1 + P2 = P, is always guaranteed in order to maximize T1

subject to T2 ≥ T0

Lemma 2: The equality in the effective throughput constraint
is always guaranteed, i.e., T2 = T0, in order to maximize T1

subject to T2 ≥ T0

Optimal design:
Step 1: Determine R2 for a feasible P2

Determine the value of R2 that maximizes T1 for given
feasible P1 and P2
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Cont.

Proposition 2: The solution of R2 to T (R2) = T0 can be
obtained by the fixed-point iteration

R2 = F (R2) =
T0

1− Q(f (γ2,R2))
(38)

Step 2: Determine R1 for given P1, P2, and R2.

The value of R1 that maximizes the effective throughput T1 is
determined
Step 3: Determine a strict lower bound on P2

Step 4: Determine the optimal power allocation
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