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System Model of SBL

SMV-SBL

@ Linear Single Measurement Vector (SMV) SBL model
y =®X+n,

y € RN, the measurement matrix & € RN*L: known and
N < L, x € Rt unknown compressible vector,
n ~ N(0,02?), 0> may be known or unknown.
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Compressible Signal

Examples

@ A vector x is p-compressible if |x;| < Ri—1/Pfori=1,...,L
@ Q: Is it possible to obtain such a compressible signal by
drawing samples from a distribution?

@ Answer: Yes, such priors are known as compressible
priors.
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Compressible Signal

Examples

@ Laplace distribution is NOT compressible
@ Generalized Compressible Prior: x
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Compressible Signal

Examples

Sorted Magnitude of Co-efficients
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Figure: Decay profile of the sorted magnitudes of i.i.d. samples
drawn from a Student-t distribution.
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Contributions
Noise Variance known: Bounds from the Joint pdf

Bayesian Lower Bounds
Y Noise Variance unknown: Bounds from the Joint pdf

BCRB, HCRB and MCRB

@ The MSE matrix E? is defined as
E® £ Eve, |(0-0(y))(0—6(y) ],

where ©, denotes the random parameters to be estimated
(whose realization is given by 6,).

@ 19 is expressed in terms of the individual blocks of
submatrices, where the (ij )" block is given by

I! = —Ev.,[Ve,V, 109 Py 0,0, (Y; 6r; 6a)].

@ A lower bound on the MSE matrix E? is given by the
inverse of the FIM:
—1
E9 > (|9) .
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Contributions
Noise Variance known: Bounds from the Joint pdf

Bayesian Lower Bounds
Y Noise Variance unknown: Bounds from the Joint pdf

Known Noise Variance

~: random
X: random

BCRB from p(y,x,~)

~: deterministic
x: random
HCRB from p(y, x; )

~: deterministic ~: marginalized
H X: marginalized x: random
H MCRB from p(y; ) MCRB from p(y, x)

Figure: Summary of the lower bounds derived in this work when
noise variance is assumed to be known.
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Contributions
Noise Variance known: Bounds from the Joint pdf

Bayesian Lower Bounds
Y Noise Variance unknown: Bounds from the Joint pdf

Unknown Noise Variance

~: deterministic ~: random ~: deterministic
X: random x: random x: marginalized
o2: random o2: random o2: deterministic
HCRB from p(y, x, 0% v) BCRB fromp(y, x, 9%,7) MCRB from p(y;~,o?)

Figure: Different modeling assumptions and the corresponding
bounds derived in this work when noise variance is assumed to be
unknown.
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Contributions
Noise Variance known: Bounds from the Joint pdf
Noise Variance unknown: Bounds from the Joint pdf

Bayesian Lower Bounds

HCRB for 6 = [x,~]

Proposition

For the signal model in (3), the HCRB on the MSE matrix E? of
an unknown vector 8 = [x, «], where the conditional distribution
of the unknown compressible signal x /~ is N'(0, Y) and ~ is
modeled as an unknown deterministic parameter, is given by
E? ~ (H%)~1, where

TP
HE — ( +T_1> OLxL

OL L diag(2+?, 273, ..., 293)7t
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Contributions
Noise Variance known: Bounds from the Joint pdf
Noise Variance unknown: Bounds from the Joint pdf

Bayesian Lower Bounds

BCRB for 68 = [x, ]

Proposition

For the signal model in (3), the BCRB on the MSE matrix E? of
an unknown random vector 6 = [x, |, where the conditional
distribution of the unknown compressible signal x /~ is N'(0, Y),
the hyperprior distribution on ~ is ]_[iL:1 G (%, %) is given by
E? = (BY)1, where

TP
B <02 +T_l> St
0 )\2(1/+1)(V+7)|
LxL 2 LxL
v
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Contributions
Noise Variance known: Bounds from the Joint pdf
Noise Variance unknown: Bounds from the Joint pdf

Bayesian Lower Bounds

MCRB for 6 = [7]

Theorem

For the signal model in (3), the log likelihood function
log py.4(Y;~y) satisfies the regularity conditions. Further, the
MCRB on the MSE matrix EY of the unknown deterministic
vector @ = [v] is given by EY = (MY)~1, where the ij"" element
of M7 is given by

MY = o7 1e,)2

i — 5( i <y i)

for 1 <i,j <L, where ®; is the i column of ®, and
3y = 0?lyxn + @Y PT, as defined earlier.
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Contributions
Noise Variance known: Bounds from the Joint pdf

Bayesian Lower Bounds
Y Noise Variance unknown: Bounds from the Joint pdf

MCRB for 6 = [X]

The Student-t prior,

L
L 2\ —(v+1)/2
r((v+1)/2 L/2 AX;
px(X) = ( ((F(V/Z))/ )) ()11 <1+ T) ,
i=
where x; € (—o0,0), v, A > 0, v: number of degrees of
freedom, \: inverse variance.

Theorem

For the signal model in (3), the MCRB on the MSE matrix E* of
the unknown compressible random vector 6 = [x] distributed as
(1), is given by EX = (M*)~1, where

L2Te Aw+1)
g (v+3) &
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Contributions
Noise Variance known: Bounds from the Joint pdf
Noise Variance unknown: Bounds from the Joint pdf

Bayesian Lower Bounds

GCP on Xx:

_ (A /) Al S
0= (3) )L.H< )
&)

Theorem

For the signal model in (3), the MCRB on the MSE matrix E¢ of
the unknown random vector 6 = [x], where x is distributed by a
GCP in (1) is given by E® = (M?)~1, where

o_2T®  Ttl) (NTI(FTE2-3)
= e (0) v

lxe, (2)
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Contributions
Noise Variance known: Bounds from the Joint pdf

Bayesian Lower Bounds Noise Variance unknown: Bounds from the Joint pdf

Preliminaries

@ In the Bayesian formulation, the unknown noise variance is
associated with a prior, 0? ~ ZG(c,d),

p=(¢§) = —Cf(_c_l) exp {——} ; £€(0,00), c,d > 0.
3)
@ Under this assumption, one can marginalize the unknown
noise variance and obtain the marginalized likelihood
p(y/x) as,

(2d)°T(N/2 4 ¢)

_ ()
p(y/X) - F(c)(7r)N/2

(y—ex)T(y-@x)+2d) * 7,
(4)

which is a multivariate Student-t distribution.
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Contributions
Noise Variance known: Bounds from the Joint pdf
Noise Variance unknown: Bounds from the Joint pdf

Bayesian Lower Bounds

HCRB for 6 = [x,~, ]

0/

Proposition
For the signal model in (3), the HCRB on the MSE matrix Eg of
the unknown vector 8 = @’ €], with the conditional

0/
distribution of the unknown compressible vector
x/y ~N(0,T), and £ modeled as an unknown deterministic
parameter, is given by (Hf)~*, where

H 0L
HE = . N |. (5)
1xL 2—52
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Contributions
Noise Variance known: Bounds from the Joint pdf
Noise Variance unknown: Bounds from the Joint pdf

Bayesian Lower Bounds

BCRB for 0 = [x,~..¢]
0/

Proposition

For the signal model in (3), the HCRB on the MSE matrix Eg of
the unknown random vector 8 = [&:1, €], with the conditional

9/
distribution of the unknown compressible vector given by x /v is
N (0, Y), where « is modeled as an unknown deterministic or
random parameter, and the unknown random parameter ¢ is
distributed as ZG(c,d), is given by (H?)~*, where

0 HY’ OpLx1
H¢ = c(c+1)(N/2+c+3)|. (6)
O1xL 32
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Contributions
Noise Variance known: Bounds from the Joint pdf

Bayesian Lower Bounds Noise Variance unknown: Bounds from the Joint pdf

MCRB for 6 = [, ¢]

Theorem

For the signal model in (3), the log likelihood function
log py.¢(y; v, &) satisfies the regularity condition. Further, the
MCRB on the MSE matrix Eg, of the unknown deterministic

vector 6 = [, ¢] is given by E? = (M2)~*, where

(7)

ME — [ ME () M?(%f)} |

T ME(E ) ME(E)

1 _ 1.
(ME())y = 5 {(CDJ-TEY 1¢i)2}, M = ZTr(5;2) and
oI X, 20;

(M(7, &) = (ME(&, 7)) = ——3
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Lower Bounds on the MSE Performance of X(y)

r Bounds on the MSE Performance of 5(y)
Simulation Results L r Bounds on the MSE Performance of £(y)

MSE in £(y)

—— ARD-SBL,v =2.05
—¥—EM,v =205
—6— MCRB, v = 2.05
—B—BCRB,v =2.05
==+ARD-SBL, v =2.01
=¥ EM,v =201
-O- MCRB, v =2.01
-} BCRB,v =201
10 ; ; ; ; ;
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Number of Observations N

10°

Figure: Plot of the MSE performance of X(y), the corresponding
MCRB and BCRB as a function of N, where SNR = 40dB.
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MSE in &(y)

Simulation Results

Lower Bounds on the MSE Performance of X(y)

Lo

Bounds on the MSE Performance of 5(y)

Lower Bounds on the MSE Performance of £(y)
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—— ARD-SBL, N = 750
—¥—EM, N = 750 4
—©—MCRB, N = 750

—B—BCRB, N = 750

- - ARD-SBL, N = 1000
=¥ EM, N = 1000

-O- MCRB, N = 1000
-CF+  BCRB, N = 1000
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Figure: Plot of the MSE performance of X(y), the corresponding
MCRB and BCRB as a function of v, where SNR = 40dB.
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Lower Bounds on the MSE Performance of X(y)
Lower Bounds on the MSE Performance of %(y)

i : r Bounds on the MSE Performance of §
Simulation Results ’ ce of £(y)
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Figure: Plot of the MSE performance of 4(y) and the corresponding
HCRB as a function of SNR, where N = 1000.
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Simulation Results

Lower Bounds on the MSE Performance of X(y)
Lower Bounds on the MSE Performance of %(y)

Lower Bounds on the MSE Performance of £(y)

SNR(dB) 10 20 30
MSE 0.05429 0.05270 0.05132

M=1 MCRB 0.05218 0.05134 0.05070
BCRB 0.04880 0.04880 0.04880
MSE 0.04500 0.03923 0.03476

M =50 | MCRB 0.0012 0.0011 0.0010
BCRB | 9.766 x 10~% | 9.766 x 10~* | 9.766 x 10~*

Table: MSE of the estimator 4(y), the MCRB and the BCRB as a

function of SNR for N

= 1500.
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Lower Boun n the MSE Performance of X(y)
Lower Bounds on the MSE Pei mance of (y)
Lower Bounds on the MSE Performance of £(y)

Simulation Results
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Figure: Plot of MSE performance of £(y) along with the HCRB as a
function of N.
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Lower Bounds on the MSE Performance of X(y)
Lower Bounds on the MSE Performance of 5(y)

Lower Bounds on the MSE Performance of £(y)

Simulation Results

N 1500 1700
MSE | 0.7362 x 108 | 0.6360 x 10~8
M=1 MCRB | 0.3796 x 10~% | 0.3071 x 108
HCRB | 0.1333x 10 % | 0.1176 x 10°®
MSE | 0.9304 x 1079 | 0.8661 x 109
M =50 | MCRB | 0.6803 x 10 1 | 0.6142 x 1010
HCRB | 0.2666 x 101V | 0.2352 x 10~ 1Y

Table: MSE of the estimator £(y), the MCRB and the HCRB as a
function of N.
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