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DNN for Sparse Signal Recovery

Learning to optimize
Signal processing algorithm is approximated by a Deep Neural Network
(DNN)
DNN requires only simple arithmetic operations to approximate the
algorithm
Effectiveness of the proposed approach was demonstrated by
implementing WMMSE algorithm using DNN

Sparse signal recovery using DNN: approaches
Training a DNN using ground truth(y ,x)
Training a DNN using the input/output of a sparse recovery algorithm
Approximating each layer of a neural network by the input/output of
an iterative sparse recovery algorithm

Observation
Performance of the DNN based sparse signal recovery depends on the
architecture of the neural network and number of training data
Extended Target Detection problem: DNN based implementation
may resolve boundary and block size mismatches

(SPC Lab) October 20, 2018 3 / 39



Generative Adversarial Networks
(GAN)
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Generative Adversarial Network

Simultaneously learn two models:1

A generative model G: captures the data distribution
A discriminative model D: estimates the probability that a sample
came from training data rather than G

Training data: x v pdata

Genarator distribution: G(z) v pg

D maximizes: the probability of assigning correct label to both
training samples and samples from G

G minimizes: log (1−D(G(z)))

min
G

max
D

V (D,G)

V (D,G) =Exvpdata [logD(x)] + Ezvpz(z)[log (1−D(G(z)))]
(1)

1 Ian J. Goodfellow et al. “Generative Adversarial Networks”. In: CoRR (2014). arXiv: 1406.2661. url:
http://arxiv.org/abs/1406.2661.
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Generative Adversarial Network

For G is fixed, the optimal discriminator D is

D∗G (x) =
pdata(x)

pg(x) + pdata(x)
(2)

Proof

V (D,G) =

∫
x

pdata(x) log(D(x)) + pg(x) log (1−D(x))dx (3)

Maximum of a log(y) + b log(1− y) is at a
a+b

in y ∈ [0, 1]

D maximizes P(y |x)

Y indicates whether x from pg or pdata
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Generative Adversarial Network

Cost function during the training of generator

C(G) = max
D

V (D,G)

= Exvpdata log(
pdata(x)

pg(x) + pdata(x)
) + Exvpg log(

pdata(x)

pg(x) + pdata(x)
)

(4)

The global minimum of C(G) is achieved if and only if pg = pdata
C (G ) = − log 4

Proof

C(G) = max
D

V (D,G)

= − log 4 + KL(pdata||
pg(x) + pdata(x)

2
) + KL(pg||

pg(x) + pdata(x)

2
)

(5)

If G and D have enough capacity, and at each stage of the training,
the discriminator is allowed to reach its optimum given G,then pg
converges to pdata
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GAN: Discriminator Training Scheme

Training of Discriminator

{x (1)d , x
(2)
d ....x

(m)
d }: samples from data distribution (labels 1)

{x (1)g , x
(2)
g ....x

(m)
g }: samples from generative networks (labels 0)

Discriminator	Network
1/0Xd / Xg
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GAN: Generator Training Scheme

Training of Generator

Discriminator is frozen

Generator Network is trained with the desired label at the
discriminator output as 1

Discriminator	Network
1XgGenerator	Network	z
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Generative Adversarial Network

1: for Number of training iterations do
2: for k steps do
3: Sample minibatch of m noise samples {z (1), z (2)....z (m)} from noise

prior pz(z)
4: Sample minibatch of m example {x (1), x (2)....x (m)} from data

generation distribution pdata(x)
5: Update the discriminator by ascending its stochastic gradient

∇θD{
1

m

m∑
i=1

[logD(x i ) + log (1−D(G(z i )))]} (6)

6: end for
7: Sample minibatch of m noise samples {z (1), z (2)..z (m)} from noise prior

pz(z)
8: Update the generator by descending its stochastic gradient

∇θg {
1

m

m∑
i=1

[log (1−D(G(z i )))]} (7)

9: end for
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Generation of Handwritten Digits using GAN

Figure: Iteration # 1

Figure: Iteration # 40

Figure: Iteration # 20

Figure: Iteration # 100
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Generation of Sparse Signal Vectors using GAN

0 20 40 60 80 100

Location

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

A
m

p
li
tu

d
e

Figure: Iteration # 1
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Figure: Iteration # 20
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Figure: Iteration # 10
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Figure: Iteration # 30
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Compressive Sensing Using
Generative Models
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Compressive Sensing Using GAN

System model

y = Ax + n y ∈ Rm×1,A ∈ Rm×n, x ∈ Rn×1

||x||0 = k k ∈ {1, 2, 3...}
(8)

The generative models learns a mapping from low dimensional
representation space z ∈ Rk to the high dimensional sample space
G(z) ∈ Rn

Proposed algorithm: Find a mapping between observation vectors y
and the vectors in the latent space z

Mapping between measurement space and latent space is obtained by
minimizing the following loss function2

V (z) = ||AG(z)− y||2 (9)

2 Ashish Bora et al. “Compressed Sensing using Generative Models”. In: Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. 2017, pp. 537–546. url:
http://proceedings.mlr.press/v70/bora17a.html.
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Sparse Signal Recovery using GAN

Generator Discriminator

Auxiliary	Network	

Measurement		Matrix

𝑍

𝑍"

𝑋$ = 𝐺(𝑍)

𝑌$

𝑋

𝑇/𝐹

𝐿𝑜𝑠𝑠 = 𝑉(𝐺,𝐷)

𝐿𝑜𝑠𝑠 = 𝑌 − 𝐴𝐺(𝑧) ^2

Figure: Compressive Sensing using GAN
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New Framework for Sparse Signal
Processing
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New Framework for Sparse Signal Recovery

SparseNet 𝑥"# − 𝑥" %

𝑦" 𝑥"#

𝑦"
Measurement	

Matrix
	𝐴	𝑥"# − 𝑦" %

Discriminator
1/0

𝑥"

SparseNet : DNN for sparse signal recovery

Discriminator network can ensure sparsity

May be useful to ensure more general features like block sparsity
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Sparse Signal Recovery using New Framework

Training of Discriminator

Discriminator : Ensures sparsity of x

Trained using {Data,Label} = {{x̂i,0},{xk,1}.... }

Training of SparseNet

Discriminator is frozen
DNN is trained by simultaneously minimizing the loss function

min
G

λ1V (D,G) + λ2Eyvpy ||y − AG(y)||2

V (D,G) = Eyvpy [log (1−D(G(y)))]
(10)

λ1&λ2: Loss weights can be specified during the training phase
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Sparse Signal Recovery
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Sparse Signal Recovery
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Adaptive Signal Recovery

SparseNet 𝑥"# − 𝑥" %

𝑦" 𝑥"#

𝑦"
Measurement	

Matrix
	𝐴	𝑥"# − 𝑦" %

Discriminator
1/0

𝑥"

Training of G does not require unknown sparse vector x

Update the weights and biases of the DNN during signal recovery
phase
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Comparison of Adaptive Vs Non-Adaptive
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Comparison of Adaptive Vs Non-Adaptive

0 5 10 15 20 25 30 35 40 45 50

Location

-3

-2

-1

0

1

2

3

A
m

p
li
tu

d
e

Adaptive DNN Output

Conventional DNN Output

Original  Signal

(SPC Lab) October 20, 2018 23 / 39



Comparison of Adaptive Vs Non-Adaptive
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Comparison of Adaptive Vs Non-Adaptive
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Comparison with Other Algorithms
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Comparison with Other Algorithms
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Training Sets with Different Cardinality
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Training Sets with Different Cardinality
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Intuitive Explanation Under Bayesian Framework

Signal Model:

y = Ax + n y ∈ Rm×1,A ∈ Rm×n, x ∈ Rn×1,

||x||0 ≤ K n ∼ N(0,
I

λ
)

(11)

Likelihood term is given by,

p(y|x, λ) = (
λ

2π
)

m
2

exp(−λ
2
||y − Ax||2)

log(p(y|x, λ)) = −λ
2
||y − Ax||2 + f (λ)

(12)

Maximum Likelihood Estimation of x with sparsity constraint is

x̂ = argmax
x∈S

p(y|x, λ)

S = {x : ||x||0 ≤ K }
(13)
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Intuitive Explanation Under Bayesian Framework

For G is fixed, the optimal discriminator D is

D∗G (x) =
pdata(x)

pg(x) + pdata(x)
(14)

The global minimum of C(G) is achieved if and only if pg = pdata.

C(G) = max
D

V (D,G)

= − log 4 + KL(pdata||
pg(x) + pdata(x)

2
) + KL(pg||

pg(x) + pdata(x)

2
)

(15)

Discriminator ensures pg = pdata =⇒ x̂ = G (y) ∈ S
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Intuitive Explanation Under Bayesian Framework

Optimization problem during the training phase becomes

min
G:G(y)∈S

(−log4)λ1 + λ2
1

m

m∑
i=1

||yi − AG(yi)||2

m : Number of samples in a minibatch

(16)

Above cost function is proportional to the log likelihood of
{y1, y2...ym}
PX(x): uniform prior over S

The new framework tries to give a MAP estimate of x with prior
distribution PX(x) or ML estimate on the set of k sparse vectors
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Coupled Dictionary Learning
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Coupled Dictionary Learning using DNN

Dictionary Learning of x and y
zx : Sparse representation of x
zy : Sparse representation of y

Coupled Dictionary Learning
Train a mapping network between zx and zy
zx: Sparse representation of x and y with respect to coupled dictionary
Dictionary for x :Decoding network of x
Dictionary for y :Decoding network of y and mapping network
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Dictionary Learning using K-SVD

% of Recovered Atoms =
R

n
100, R =

n∑
i=1

1(x<.01), x = 1−max( d̂i
T
dj )

Average representation error,E =
1

N

N∑
i=1

||Yi − D̂Ẑi||2

m

(17)
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Figure: K-SVD
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Dictionary Learning using DNN
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Dictionary Learning using DNN
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Dictionary Learning under new Framework

Encoding	
Network 𝑥"# − 𝑥" %

𝑦" 𝑥"#

𝑦"
Decoding	
Network

Discriminator
Network

		𝑦"# − 𝑦" %

1/0

Decoding network is a single layer MLP with linear activation
functions
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Conclusion

The new framework allows to update the inverse function during
testing phase (Adaptive Signal Recovery)

The proposed discriminator based scheme can be extended for
arbitrary prior distribution

More general features like block sparsity may be ensured using
adversarial training

The new framework may be useful for other sparse signal processing
applications like dictionary learning, coupled dictionary learning etc.
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