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Introduction

Why do we want to know connection/disconnection?
Several applications - priced information query, communication networks,
nearest neighbours

Erdos-Renyi random graph, G(n,p)

I All edges between n nodes enabled with an equal probability, p

I Literature has explored asymptotic connectivity

I Optimal policy to find connection/disconnection between
source-destination in minimum number of steps

I Sequential testing strategy for a specific realization of the random
graph

I Optimal policy does not depend on n or p

I Problem different from that of finding the shortest path
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Figure: Policy applied on 4-node ER graph
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Notation

I et - Edge tested at step t

I Gt - Graph state as known at step t

I CS,t ,CD,t and Ci,t - Connected component containing the source,
destination and the i th component not containing the source and
destination respectively

I MG - Minimum cut for a graph state G with minimum number of
potential edges at time t

I Three kinds of edges for this presentation - known edge, known
non-edge, potential edge
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Alternating policy

Policy π∗ = {π∗
0 , π

∗
1 , . . . , π

∗
N} to check for S − D connectivity in ER

graph. Each π∗
t maps Gt to one of the remaining potential edges to be

tested at time t.

I Rule 1: Test for direct one-hop potential edge between CS and CD .

I Rule 2: If no edges found from Rule 1, get a path list L, with
minimum number of potential edges and selected MG .
MG divides the graph into C ∪ CS and CD or CS and C ∪ CD , where
C = C1 ∪ C2 ∪ . . .Cr

I Rule 3: Sort C1,C2, . . .Cr and test the edge in L that connects CS

or CD to component, Ci with largest no.of edges
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Figure: Illustration of Rules 2 and 3
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Claim: The alternating policy π∗ is optimal.
Prove that each of the three rules is optimal.
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Optimality of Rule 1

Lemma (1)
For any policy A that tests an edge other than direct potential edge
between CS and CD , there is a policy Ã that tests direct potential edge
and incurs a lower cost.

Idea: Stochastic coupling
Ui (ω): choice made by A at a step i
T (ω): termination time of A
nd(ω): first time that A tests d

nd(ω) = inf {t ≥ 1 : Ut(ω) = d}
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Sequence of edges tested under A till it terminates are divided into 3
cases.

1. {U1(ω),U2(ω), . . . ,UT (ω)} where Ui (ω) 6= d , i = 1, . . . ,T (ω).
T (ω) ≤ nd(ω) = +∞

2. {U1(ω),U2(ω), . . . ,Und (ω)−1(ω),Und (ω)(ω) = d}. T (ω) = nd(ω)

3. {U1(ω),U2(ω), . . . ,Und (ω)−1(ω),Und (ω)(ω) =
d ,Und (ω)+1(ω), . . . ,UT (ω)(ω)}

Construct family of policies {Ai} such that

I {Ai} follows A
I If A has not tested d by step i , then {Ai} does test d by step i

I {Ai} catches up with A when A tests d
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Sequence of resulting edges tested by A1 till it terminates has 3 cases

1. If T 1 = nd(ω) or {T 1 < nd(ω), ed = 1}, {d}
2. If T 1 < nd(ω) and ed = 0, {d ,U1(ω),U2(ω), . . . ,UT 1(ω)}
3. If T 1 > nd(ω) and ed = 0,
{d ,U1(ω),U2(ω), . . . ,Und (ω)−1(ω),Und (ω)(ω),Und (ω)+1(ω), . . . ,UT 1(ω)}

Therefore,

|T 1| = 1(T 1 = nd(ω)) + 1(T 1 < nd(ω), ed = 1)

+ 1(T 1 < nd(ω), ed = 0)[|T 1|+1]

+ 1(T 1 > nd(ω), ed = 0)|T 1|
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T 1 − T i = 1(T 1 = nd(ω))[1− T i ]

+ 1(T i < nd(ω), ed = 1)[1− T i ]

+ 1(T i < nd(ω), ed = 0)1

If we have policy A2, T 2 is defined similarly and,

E[T 1 − T 2] = E[1(T 2 = 2)(1− 2) + 1(T 2 < 2, ed = 1)x(1− 1)

+ 1(T 2 < 2, ed = 0)|T |]
= E[1(T 2 = 2)(−1) + 1(T 2 = 1, ed = 0)] = −p + 0 = −p

This implies that A1 has lower cost than A2.
Similarly each Ai has lower cost than Ai+1.
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Optimality of Rule 2

Lemma (2)
When a policy follows both Rules 1 and 2, all the edges in the minimum
cut at any step will be between CS and ∪ri=1Ci , or they will all be
between ∪ri=1Ci and CD .

I Suppose that at some step, not all the components other than CS

and CD lie in the same class
I Number of potential edges will be 3 (not 2), which violates Rule 2

Lemma (3)
When there are no direct edges between CS and CD , listing all the
potential shortest paths and sampling the edges in the minimum set on
them will lead to smaller expected cost than sampling any other edge
first.

I Induction on num of steps
I Edges in the minimum cut are all between CS and ∪ri=1Ci

I For step t + 1, consider policy A which violates Rule 2, tests edge
between C1 and CD , and then follows Ã.
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Optimality of Rule 3

Lemma (4)
Among all the potential edges that C1 and C2 connect to in MGt and
k12 ≥ k22, it incurs smaller expected cost to first test the ones that C1 is
connected to, where k12 is num of edges from C1 to CD and k22 is num
of edges from C2 to CD .

I Induction on the num of potential edges

I Rules 1,2 and 3 hold good for 2 potential edges

I Consider policy Ã which follows the Rules and A which violates Rule
3 by testing an edge connected to C2, and then follows the optimal
policy for graph with k edges

Optimal Determination of Source-Destination Connectivity in Random Networks SPC Lab, IISc 13 / 17



Figure: Illustration of the cases
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Computational complexity

Lemma (5)
The optimal policy is implementable with a computational complexity of
no more than 30 log2 n operations at each step
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Extension to general graphs

I (1, p) random graphs

I (1, 0, p) random graphs

I Series of parallel graphs

I Parallel of series graphs

I Series of parallel of series graphs

I Parallel of series of parallel graphs
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