
Infinite Diversity Order Techniques Using CSIT

T. Ganesan

gana@ti.com

SPC Lab

Jan 5th, 2013

T. Ganesan (SPC Lab) Dept. of ECE, IISc Jan 5th, 2013 1 / 46



Outline

1 Introduction

Tx Diversity

2 Tx Precoding with CSIT

Channel Inversion

Equivalent Channel

3 New Precoding

New Precoder 1

New Precoder 2

Multi-user Channels

4 Simulation Results

T. Ganesan (SPC Lab) Dept. of ECE, IISc Jan 5th, 2013 2 / 46



1 Introduction

Tx Diversity

2 Tx Precoding with CSIT

Channel Inversion

Equivalent Channel

3 New Precoding

New Precoder 1

New Precoder 2

Multi-user Channels

4 Simulation Results

T. Ganesan (SPC Lab) Dept. of ECE, IISc Jan 5th, 2013 3 / 46



Diversity and Multiplexing Gain

Diversity and Multiplexing gain for a block fading Rayleigh fading

MIMO system are defined as

d , lim
SNR→∞

−∂ log Pe

∂ log SNR

r , lim
SNR→∞

∂R
∂ log SNR

Diversity can be obtained by either Rx diversity or Tx diversity or both.

E.g., MRC Rx diversity = Nr, MRT Tx diversity = Nt

Rx diversity based schemes result in a maximum diversity of NrNt.

Can we get better than d = NrNt ?
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Alamouti Scheme : I

2 Tx antenna is needed. Any number of Rx antennas is supported.

For ith Rx antenna, the received vector is represented as

[y1i y2i] = [h1i h2i]

 x1 −x∗2

x2 x∗1

+ [n1i n2i]

where [h1i h2i] represent the channel gains from 2 Tx ant. to ith Rx ant.

T. Ganesan (SPC Lab) Dept. of ECE, IISc Jan 5th, 2013 6 / 46



Alamouti Scheme : II

The decoder estimates the symbols as

x̂1 = h∗1iy1i + h2iy∗2i

x̂2 = h∗2iy1i − h1iy∗2i
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Alamouti Scheme : III

The signal model can be equivalently written as y1i

y∗2i

 =

√
kρ
2

 h1i h2i

h∗2i −h∗1i

 x1

x2

+

 n1i

n∗2i

 , (1)

y′ =
√

kρ
2

H̃x + n′

Equivalent channel matrix H̃ is an orthogonal matrix 1.

This scheme achieves full diversity NrNt.

1See Exercise 9.4 in [1]
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Tx Diversity Schemes

Scenario CSI Condition Maximum Diversity Order References

d

SIMO CSIR Nr [2]

SIMO CSIR, ˆCSIT 2Nt,∞∗ [3, 4]*

MISO CSIR Nt [5, 6]

MISO ˆCSIR, ˆCSIT N2
t (N2

t + Nt + 1) + Nt [7]

MIMO CSIR NtNr [8]

MIMO ˆCSIR NtNr

[
rTc

Tc−Ltr

]
[9]

MIMO CSIR,CSIT ∞ [10]

MIMO CSIR, ˆCSIT NrNt(NrNt + 2) [10]

MIMO ˆCSIR, ˆCSIT 2NrNt [10]

Table : Summary of maximum diversity order in Rayleigh fading MIMO Channels.
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Diversity-Multiplexing Gain Trade-off with CSIR

Zheng and Tse [1] had shown that, there exists a trade-off between

Diversity and Multiplexing gain that can be achieved.

A certain combinations of (r, d) is only possible for the given (Nr,Nt)

configuration.

(d, r) = (k, (Nt − k)(Nr − k)), k = 0, 1, . . . ,min(Nr,Nt)

Alamouti scheme operates at one of the operating points (0,NrNt).

To realize other operating points, new codes can be designed or Tx

precoding can be done.
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Channel inversion in SIMO

Consider the SIMO channel

y =

√
kρ
Nt

hx + n

where ρ refers to total Tx power, k is a constant to ensure average power

constraint.

Since ‖h‖2 is a χ2
2d random variable, E

[
1
‖h‖2

]
= 1

2(d−1) is finite.

One can choose k = 1
‖h‖2 to obtain equivalent AWGN channel at the Rx,

⇒ d =∞.

This is not possible for SISO case since average Tx power is not finite.
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Channel inversion in MIMO

For the MIMO channel also one can invert the channel by choosing precoding

P matrix suitably. That is,

y =

√
ρ

Nt
HPx + n

Let P =
√

Nt
ρ H† where H† refers to the pseudo-inverse of H.

E[xHPHPx] = ‖x‖2 tr[PHP]

min(Nr,Nt)
=

‖x‖2

min(N − r,Nt)
E

[∑
i

1
σ2

i

]
which is not finite for Rayleigh block fading channel since the smallest

eigenvalue of HHH is χ2
2 distributed.

NOTE: Mean value of inverse of χ2
2 is not finite.
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Orthogonality of H̃ for h ∈ RNt : I

Lemma 1
The equivalent channel matrix constructed for real square O-STBC is

orthogonal.

Proof: The two equivalent representations of the received vector y in terms of

h and x can be written as

y =

√
kρ
Nt

Xh =

√
kρ
Nt

H̃x (2)
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Orthogonality of H̃ for h ∈ RNt : II

Multiplying by XT on both sides, we get

αh = XTH̃x

where XTX = αI.

There exists a linear transformation between h and x which indicates that

the columns of H̃ are linearly independent.
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Orthogonality of H̃ for h ∈ RNt : III

Due to the structure of O-STBC codes, X1 and X2 are orthogonal

matrices by construction. Moreover, it can be shown that

xT
2,jx1,i = −xT

2,ix1,j and xT
1,ix2,i = xT

1,jx2,j [11]. That is,

yT
1 y2 = hTXT

1 X2h =
∑

i

∑
j

hihjxT
1,ix2,j =

∑
i

h2
i xT

1,ix2,i = xT
1,ix2,i

∑
i

h2
i ,

(3)

yT
1 y2 = xT

1
(
H̃TH̃

)
x2. (4)
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Orthogonality of H̃ for h ∈ RNt : IV

Eqns. (4) and (5) are equal, if and only if H̃ is orthogonal and

hT
i hi = hT

j hj.

Note that, the converse part is true since one of the columns of X1 is

same as x1 and one of the columns of X2 is same as x2.

�
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Proposed Precoder: Assumptions

Only block fading Rayleigh channels are considered.

CSI is available only at the Tx.

Signaling is assumed to use orthogonal STBC using symbols from unit

energy constellations.

Nt > 3 for real O-STBC cases.
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Proposed Precoder 1 : I

Tx Precoder-1 for Nr = 1
The precoding matrix that converts the Nt × 1 MISO channel into fixed gain

SISO AWGN channel is given by

P =
1
α

H̃H,

where α is related to H̃ as H̃H̃H = αI.
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Tx Diversity using Precoding

Recall that the effective channel matrix H̃ is orthogonal.

Use P = H̃H . That is,

x̂ =

√
kρ
Nt

H̃Px + n =

√
kρ
Nt

x + n (5)

where α = |h1|2 + |h2|2 + . . .+ |hd|2 is a χ2
2d random variable.
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Average Tx Power Constraint : I

The average Tx power can be written as

Pavg =
kρ
Nt

Eh,x
[
xHPPHx

]
.

Pavg =
kρ
Nt

Ex
[
xHx

]
Ex

[
1
α

]
.

It can be shown that

Eh

[
1
α

]
=

1
Nt − 2

, for Nt > 2.

Hence, one can pick k = (Nt − 2) and get Pavg = ρ.
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Proposed Precoder 1 for Multiple Rx Antennas : I

Tx Precoder-1 for Nr > 1
Adopt Antenna selection at the Rx and use the selected (say ith) MISO

channel hi to compute the precoding matrix P.

The average Tx power can be written as

Pavg =
kρ
Nt

Ex
[
xHx

]
Ex

[
1
α

]
,

where α = max[α1, α2, . . . , αNr ]
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Proposed Precoder 1 for Multiple Rx Antennas : II

It can be shown that

E
[

1
α

]
=


21−Nt

Γ( Nt
2 )

∑∞
m=0

Γ(Nt−1+m)

2mΓ( Nt
2 +m)

, for real hi

22−2Nt

Γ(Nt)

∑∞
m=0

Γ(2Nt−1+m)
2mΓ(Nt+m) , for complex hi

. (6)

Hence, one can pick k = 1/E
[ 1
α

]
and get Pavg = ρ.
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Proposed Precoder 2 : I

The model for the signal at the receiver is given by

y =

√
kρ
Nt

hHPx̃ + n, (7)
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Proposed Precoder 2 : II

Tx Precoder-2 for Nr = 1
Assuming Nt ≥ 2, the precoding matrix that converts the Nt × 1 MISO

channel h into fixed gain SISO AWGN channel is given by

P = QU

where Q is related to H as h = QR, U is an arbitrary non-diagonal unitary

matrix and x̃ is chosen such that RHUx̃ = x, where x ∈ C is the data vector to

be sent.
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Average Tx Power Constraint : I

The average Tx power can be written as

Pavg =
kρ
Nt

Ex,h

[
xHx + xH(I− Ru1)HR−H

u2 R−1
u2 (I− Ru1)x

]
=

kρ
Nt

{
tr
(
Ex[xxH]

)
+ tr

(
Eh

[
R−1

u2 (I− Ru1)Ex[xxH](I− Ru1)HR−H
u2

])}
=

kρ
Nt

{
Nr + tr

(
Eh

[
R−1

u2 (I− Ru1)(I− Ru1)HR−H
u2

])}
. (8)
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Average Tx Power Constraint : II

For simplicity, we can choose U11 = INr/
√

Nt and U12 = −INr/
√

Nt.

Now, we get

tr
(
Eh

[
R−1

u2 (I− Ru1)(I− Ru1)HR−H
u2

])
= Eh

[
1

Nr
tr
(

R−H
1 R−1

1

)
− 2√

Nr
tr
(

R−1
1

)
+ Nr

]
= tr

(
Eh

[
R−H

1 R−1
1

])
− 2tr

(
Eh

[
R−1

1

])
+ Nr. (9)
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Average Tx Power Constraint : III

Using Lemma 6 in [12] and approximating the diagonal elements of R1

as χNt−distributed random variables, we get

Pavg ≤ kρ
Nt

[
2Nr + 1− 2Nr

Γ(Nt − 0.5)

Γ(Nt)

]
. (10)

And, k can be chosen as

k ≥ Nt[
2Nr + 1− 2Nr

Γ(Nt−0.5)
Γ(Nt)

] , (11)

to satisfy the average transmit power constraint.
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Proposed Precoder 2 for Nr > 1 : I

The model for the signal at the receiver is given by

y =

√
kρ
Nt

HHPx̃ + n, (12)
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Proposed Precoder 2 for Nr > 1 : II

Tx Precoder-2 for Nr > 1
Assuming Nt ≥ 2, the precoding matrix that converts the Nt × 1 MISO

channel h into fixed gain Nr parallel AWGN channels is given by

P = QU

where Q is related to H as h = QR, U is an arbitrary non-diagonal unitary

matrix and x̃ is chosen such that RHUx̃ = x, where x ∈ CNr is the data vector

to be sent.
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Proposed Precoder 2 for Nr > 1 : III

The average power constraint can be obtained by choosing k such that

k =
Nt

Nr

{
Nt + tr

(
Eh

[
R−1

u2 (I− Ru1)(I− Ru1)HR−H
u2

])} , (13)
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MAC Channel with Nr = 1 and Scheme-1 : I

For M user MAC channel, the received signal y ∈ RL can be written as

y =

M∑
i=1

√
kρi

Nt
H̃(i)P(i)xi + n, (14)

where n ∈ CL , xi ∈ RL
i is the O-STBC data vector, and ρi denotes the

average transmit power from the ith user, P(i) denotes the precoding

matrix employed by the ith transmitter corresponding to its channel to the

receiver, H̃(i) is the equivalent channel matrix.
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MAC Channel with Nr = 1 and Scheme-2 : I

For M user MAC channel, the received signal y ∈ C can be written as

y =

M∑
i=1

√
kρi

Nt
hH

i Pix̃i + n, (15)

where hi ∈ CNt denotes the channel of the ith user , x̃i ∈ CNt denotes an

extended data vector, and Pi ∈ CNt×Nt denote the precoding matrix from

ith user.
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Broadcast Channel with Nr = 1 and Scheme-2 : I

For M user broadcast channel, let x = [
√
ρ1s1
√
ρ2s2 . . .

√
ρMsM]T denote

the vector containing the messages intended to the M users∑
i ρi = ρ,

si comes from a constellation with unit energy.

x̃ ∈ CNt denote an extended message vector, derived from x ∈ CM
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Broadcast Channel with Nr = 1 and Scheme-2 : II

Hence, one can write the signal model as

y =

√
k
Nt

HHPx̃ + n (16)

where P ∈ CNt×Nt is a common precoding matrix for all users, k is a

normalization constant and n ∈ CM denotes the noise vector at the M

receivers.
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Interference Channel with Nr = 1 and Scheme-2 : I

For 2 user Interference channel, one can write the signal model as

y =

√
k
Nt

HHPx̃ + n (17)

where P ∈ CNt×Nt is a common precoding matrix for all users, k is a

normalization constant and n ∈ CM denotes the noise vector at the M

receivers.
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Simulation Results : I
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Figure : Comparison of O-STBC receivers with perfect CSIR and proposed scheme

with perfect CSIT for 2× 2 system with 8-PSK constellation. Dotted line shows the

performance with peak power limited to 13.22 dB more than average transmit power.
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Simulation Results : II
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Figure : Comparison of O-STBC receivers with perfect CSIR and proposed scheme

with perfect CSIT for 4× 2 system with 4-PAM constellation. Dotted line shows the

performance with peak power limited to 12.55 dB more than average transmit power.
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Simulation Results : III
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Figure : BER performance of user 1 and user 2 in a 2× 2 MAC channel with

ρ1 = 3SNR
4 and ρ2 = SNR

4 .
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Simulation Results : IV
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Figure : BER performance of user 1 and user 2 in a Nt = 4 and Nr = 1 per user BC

channel with ρ1 = 3SNR
4 and ρ2 = SNR

4 .
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Simulation Results : V
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Figure : BER performance of user 1 and user 2 in a Nt = 4 and Nr = 1 per user

interference channel equal total power allocated to both transmitters.
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