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Problem

Problem

Consider a unlabelled dataset X = {x}N
i=1 consisting of N i.i.d. samples of some continuous

or discrete random variable x with some unknown distribution

Assume data are generated by a random process parameterized by θ

A common approach in statistical inference is to consider a joint distribution involving an
unobserved continuous r.v z (latent variable in a feature space Z)

Goal is to learn the posterior distribution of the latent variables given the dataset X

We impose a simple prior pθ(z), and the likelihood function is pθ(x|z)

We propose a general algorithm that learns the posterior distribution pθ(z|x) and/or the
marginal distribution pθ(x)

Learning the marginal distribution is computationally intractable, especially when the dataset is very
large

Approach:
Introduce a recognition model qφ(z|x) as an approximation to the true posterior pθ(z|x)
Recognition model is not necessarily factorial and its parameters are not computed from closed form
expectations
Learn the recognition model parameters φ jointly with the generative model parameters θ
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Problem

Inference using exact posterior is computationally intractable which necessitates variational
approaches

Variational Bayesian (VB) approach involves the optimization of an approximation to the
intractable posterior

Mean-field approach requires analytical solutions of expectations w.r.t. the approximate
posterior, which are intractable in the general case

A reparameterization of the variational lower bound yields a simple differentiable unbiased
estimator of the lower bound

Stochastic Gradient Variational Bayes (SGVB) estimator
Optimized using standard stochastic gradient ascent techniques

Auto-encoding VB (AEVB) algorithm is proposed for the case of an i.i.d. dataset and
continuous latent variables

Inference and learning using the SGVB estimator to optimize a recognition model
Neural network used to learn the parameters of the approximate posterior, which leads to the
variational auto-encoder (VAE)
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The Variational Bound

The Variational Bound (Evidence Lower Bound)

The marginal likelihood log pθ(x
(1), x(2), . . . , x(N)) =

∑N
i=1 log pθ(x

(i)) can be rewritten as:

log pθ

(

x(i)
)

= L
(

θ, φ; x(i)
)

+DKL

(

qφ(z|x
(i))||pθ(z|x

(i))
)

(1)

≥ L
(

θ, φ; x(i)
)

(2)

L
(

θ, φ; x(i)
)

is the variational lower bound on the marginal likelihood of the data point i

since KL divergence is non-negative

L
(

θ, φ; x(i)
)

= E
qφ(z|x(i))

[

− log qφ (z|x) + log pθ

(

x(i), z
)]

(3)

= −DKL

(

qφ

(

z|x(i)
)

||pθ (z)
)

+ E
qφ(z|x(i))

[

log pθ

(

x(i)|z
)]

(4)

We want to differentiate and optimize the lower bound w.r.t. both the variational
parameters φ and generative parameters θ
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The SGVB estimator and AEVB algorithm

The SGVB estimator and AEVB algorithm

Under mild conditions for a chosen approximate posterior qφ(z|x), we can reparameterize the
r.v z̃ ∼ qφ(z|x) using a differentiable transformation gφ(ǫ, x) of an auxiliary noise variable ǫ:

z̃ = gφ(ǫ, x) with ǫ ∼ p(ǫ) (5)

Monte Carlo estimates of expectations of some function f (z) can be computed as follows:

E
qφ(z|x(i)) [f (z)] = Ep(ǫ)

[

f
(

gφ

(

ǫ, x(i)
))]

≃
1

L

L
∑

l=1

f
(

gφ

(

ǫ(l), x(i)
))

(6)

where ǫ(l) ∼ p(ǫ)

Applying this technique to the variational lower bound, we get the SGVB estimator
L̃A(θ, φ; x(i)) ≃ L

(

θ, φ; x(i)
)

as follows:

L̃A
(

θ, φ; x(i)
)

=
1

L

L
∑

l=1

log pθ

(

x(i), z(i,l)
)

− log qφ

(

z(i,l)|x(i)
)

(7)

where z(i,l) = gφ

(

ǫ(l), x(i)
)

and ǫl ∼ p(ǫ)
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The SGVB estimator and AEVB algorithm

Second version of the SGVB estimator L̃B(θ, φ; x(i)) ≃ L
(

θ, φ; x(i)
)

L̃B(θ, φ; x(i)) = −DKL

(

qφ

(

z|x(i)
)

||pθ (z)
)

+
1

L

L
∑

l=1

log pθ

(

x(i)|z(i,l)
)

(8)

The KL divergence term can be integrated analytically, and hence only the expected
reconstruction error requires estimation by sampling (see (8))

Given a dataset X with N datapoints, we can construct an estimator of the marginal
likelihood lower bound of the full dataset based on minibatches:

L (θ, φ;X) ≃ L̃M
(

θ, φ;XM
)

=
N

M

M
∑

i=1

L̃
(

θ, φ; x(i)
)

(9)
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The Reparameterization Trick

The Reparameterization Trick

Goal: To generate samples of a random variable z ∼ qφ(z|x)

Possible to express z as a deterministic variable z = gφ(ǫ, x)
ǫ is an auxiliary variable with independent marginal pǫ
gǫ(.) is some vector-valued function parameterized by φ

Proof: Given the mapping z = gφ(ǫ, x), we know that

qφ(z|x)
∏

i

dzi = p(ǫ)
∏

i

dǫi

=⇒

∫

qφ(z|x)f (z)dz =

∫

p(ǫ)f
(

gφ(ǫ, x)
)

dǫ

≃
1

L

L
∑

l=1

f
(

gφ(x, ǫ)
(l)
)

(10)

This trick is used to obtain a differentiable estimator of the variational lower bound

Example:
z ∼ N (µ, σ2)
Reparameterization z = µ + σǫ, where ǫ ∼ N (0, 1)
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Variational Auto-Encoder

Variational Auto-Encoder

Encoder Neural Network:

Probabilistic encoder qφ(z|x)

Simple prior over the latent variables z chosen as multivariate Gaussian pθ(z) = N (z; 0, I)
Note that the prior lacks parameters

Let pθ(z|x) be a multivariate Gaussian or Bernoulli whose parameters are computed from z
using a fully connected MLP

We choose the variational approximate posterior to be a multivariate Gaussian:

log qφ

(

z|x(i)
)

= logN
(

z;µ(i),σ2(i)I
)

(11)

where the mean and s.d. of the approximate posterior are the outputs of the encoding MLP,
i.e., µ(i) = W4he + b4, logσ2(i) = W5he + b5, and the hidden layer output
he = tanh(W3x(i) + b3)

The parameter φ = {W3,W4,W5, b3, b4, b5} are the weights and biases, which are found by
passing x(i) to the MLP

Decoder Neural Network:

Probabilistic decoder pθ(x|z)

Weights and biases found similar to the encoder NN
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Variational Auto-Encoder

Sample from the posterior z(i,l) ∼ qφ(z|x
(i)) using z(i,l) = gφ(x

(i), ǫ(l)) = µ(i) + σ(i) ⊙ ǫ(l)

where ǫ(l) ∼ N (0, I)

The resulting estimator of the evidence lower bound for this model is given by

L
(

θ, φ; x(i)
)

≃
1

2

J
∑

j=1

(

1 + log

(

(

σ
(i)
j

)2
)

−
(

µ
(i)
j

)2
−

(

σ
(i)
j

)2
)

+
1

L

L
∑

l=1

log pθ

(

x(i)|z(i,l)
)

(12)

where z(i,l) = µ(i) + σ(i) ⊙ ǫ(l) and ǫ(l) ∼ N (0, I)

The decoding term pθ
(

x(i)|z(i,l)
)

is a Bernoulli or Gaussian MLP depending on the type of
data we are modelling
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Variational Auto-Encoder

THANK YOU!
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