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Problem

o Consider a unlabelled dataset X = {x}!, consisting of N i.i.d. samples of some continuous
or discrete random variable x with some unknown distribution

@ Assume data are generated by a random process parameterized by 6

@ A common approach in statistical inference is to consider a joint distribution involving an
unobserved continuous r.v z (latent variable in a feature space Z)

9 Goal is to learn the posterior distribution of the latent variables given the dataset X

@ We impose a simple prior py(z), and the likelihood function is pg(x|z)
@ We propose a general algorithm that learns the posterior distribution pg(z|x) and/or the
marginal distribution py(x)
@ Learning the marginal distribution is computationally intractable, especially when the dataset is very
large
@ Approach:
@ Introduce a recognition model g4(z|x) as an approximation to the true posterior pg(z|x)
@ Recognition model is not necessarily factorial and its parameters are not computed from closed form
expectations
@ Learn the recognition model parameters ¢ jointly with the generative model parameters 6
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9 Inference using exact posterior is computationally intractable which necessitates variational
approaches

@ Variational Bayesian (VB) approach involves the optimization of an approximation to the
intractable posterior

9@ Mean-field approach requires analytical solutions of expectations w.r.t. the approximate
posterior, which are intractable in the general case
9 A reparameterization of the variational lower bound yields a simple differentiable unbiased
estimator of the lower bound
@ Stochastic Gradient Variational Bayes (SGVB) estimator
@ Optimized using standard stochastic gradient ascent techniques
@ Auto-encoding VB (AEVB) algorithm is proposed for the case of an i.i.d. dataset and
continuous latent variables

@ Inference and learning using the SGVB estimator to optimize a recognition model
@ Neural network used to learn the parameters of the approximate posterior, which leads to the
variational auto-encoder (VAE)
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The Variational Bound (Evidence Lower Bound)

@ The marginal likelihood log py (x(V), x| ... x(M)) = :N:1 log pg (x()) can be rewritten as:
log py (x) = £ (6,6:x) + Dt (a5 (zxD)llpo(2lx)) (1)
> £ (6,0:x") ©)

o £ (0, ¢;x() is the variational lower bound on the marginal likelihood of the data point i
since KL divergence is non-negative

£(0,6:x0) =E_ (,.00) [~ 108 9 (2l%) + log po (x,2) ®)
— Dy, (q¢ (z|x(f)) [|pe (z)) +Eq¢(z‘x(,~)) [Iog Po (x(f)|z)] (4)

@ We want to differentiate and optimize the lower bound w.r.t. both the variational
parameters ¢ and generative parameters 6
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The SGVB estimator and AEVB algorithm

@ Under mild conditions for a chosen approximate posterior g, (z|x), we can reparameterize the
r.v Z ~ q4(z|x) using a differentiable transformation gy (€, x) of an auxiliary noise variable €:

Z=gy(e,x) with €~ p(e) (5)

@ Monte Carlo estimates of expectations of some function f(z) can be computed as follows:

() (@) = g [£ (s (7))
f <g¢ (6(’)7X(i))) (6)

~

M-

1
L=

where €!) ~ p(e)

@ Applying this technique to the variational lower bound, we get the SGVB estimator
EA(O, ®; x(’)) ~ L (9, @b; x(’)) as follows:

A (G,QS; x(i)> = % i log pg (x(i),z(i’/)> —log g4 (z(i’/)\x(i)> (7)
I=1

where  z(h) = g6 (e(l),x(i)> and € ~ p(e)
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The SGVB estimator and AEVB algorithm

o Second version of the SGVB estimator £5(8, ¢;x()) =~ £ (8, ¢;x()

L
- . . 1 N
B x(y = — O] il (12000
L7(8,¢;x1") = —Dgy (% <Z|X ) |lpe (Z)) +t1 15:1 log pg (X |z ) (8)
9@ The KL divergence term can be integrated analytically, and hence only the expected

reconstruction error requires estimation by sampling (see (8))

@ Given a dataset X with N datapoints, we can construct an estimator of the marginal
likelihood lower bound of the full dataset based on minibatches:

00000~ £ (0.0%) = 1138 (0,0) o
i=1
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The Reparameterization Trick

The Reparameterization Trick

@ Goal: To generate samples of a random variable z ~ g(z|x)

@ Possible to express z as a deterministic variable z = g4 (€, x)

@ € is an auxiliary variable with independent marginal pe
@ ge(.) is some vector-valued function parameterized by ¢

@ Proof: Given the mapping z = gy4(e, x), we know that

a5 (2%) [ ] dzs = p(e) ]| de

== /q¢(z|x)f(z)d2:

—

p(e)f (gs(e,x)) de

1 L
ZZf(g¢ X, e) ) (10)

I=1

12

@ This trick is used to obtain a differentiable estimator of the variational lower bound
¢ Example:

o 2 N, o)
@ Reparameterization z = p + o€, where € ~ N(0,1)
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Variational Auto-Encoder

Variational Auto-Encoder

Encoder Neural Network:
@ Probabilistic encoder g, (z|x)

@ Simple prior over the latent variables z chosen as multivariate Gaussian pg(z) = N (z;0,1)
@ Note that the prior lacks parameters

o Let pg(z|x) be a multivariate Gaussian or Bernoulli whose parameters are computed from z
using a fully connected MLP

@ We choose the variational approximate posterior to be a multivariate Gaussian:
log g4 (z|x(i)) =log N (z;u(i),a'Z(i)l) (11)

where the mean and s.d. of the approximate posterior are the outputs of the encoding MLP,
i.e., p) =Wghe + by, log 02) = Wshe + bs, and the hidden layer output
he = tanh(W3x() 4 bs3)

@ The parameter ¢ = {W3, Wy, W5, b3, bs,bs} are the weights and biases, which are found by
passing x() to the MLP

Decoder Neural Network:
@ Probabilistic decoder pg(x|z)

@ Weights and biases found similar to the encoder NN
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Variational Auto-Encoder

@ Sample from the posterior z(!) ~ g, (z|x(i)) using 2(") = g4 (x(), e)) = p) + &) © €
where () ~ A7(0,1)

@ The resulting estimator of the evidence lower bound for this model is given by
0~ 1y ()2 ()2 M2\ L v (i) 400.1)
E(G,qb;x )_ EZ(l—i—log((aj ) )— (uj ) — (crj ) )+ZZIng9 (x |z\" )
j=1 I=1
(12)
where z(") = u() 4+ () © € and € ~ N(0,1)

@ The decoding term pg (x ’)\z ’v’)) is a Bernoulli or Gaussian MLP depending on the type of
data we are modelling

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in sectioncan be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters
repeat
XM ¢ Random minibatch of M datapoints (drawn from full dataset)
€ < Random samples from noise distribution p(e)
g < Vo, 4,2“(9 ; XM | €) (Gradients of minibatch estimator )
0, ¢ < Update parameter% using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (6, ¢)
return 6, ¢
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V: | Auto-Encoder

THANK YOU!
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