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Goodness-of-Fit Tests (GoFT)

» In the classical Neyman-Pearson hypothesis testing, both
hypotheses are known

» In GoFT, distribution of the test statistic is known under Hy
and assumed to be unknown under H;

» Examples : Tests for independence, tests for deviation
from a specific distribution under Hy
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GoFT for Spectrum Sensing (SS) in CR

The choice of a GoFT depends on:
Statistics of noise

Knowledge of noise variance
Number of observations

Signal characteristics of the Primary
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Existing GoFTs in SS context

v

Wang et al. [2009] - a GoFT based on the
Anderson-Darling Statistic (ADD)

Shen et al. [2011] - a modified GoFT based on ADD and
called it the Blind Detector (BD)

v

» Denkovski et al. [2012] - a higher order statistic based
GoFT
» Rostami et al. [2012] - an ordered statistic based GoFT
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This work...

» We propose a new GoFT based on a modification of an
existing test using zero-crossings (Kedem et al. 1982)
» Advantages of our detector:

» Can be applied under Gaussian and Laplacian noise
distributions

» Robust to noise uncertainty

» Closed form for the optimal threshold
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» A single CR node carrying out SS with M observations.
» Under Gaussian noise, The hypothesis testing problem is
Ho : i~ N(0,0%)
Hi : Y; = N(0,02)
» Under Laplacian noise, The hypothesis testing problem is

Ho: Yi~ L(o5)
Hi = Y; = L(c2)
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Energy Detector (ED)

Conclusions

» When o2 is known, the ED has the following critical region

M

{Y,',iEMZZY;2>TED}7
i—1

» When n; ~ N(0,02),

_ 2
TED =7 (1 —Oé,—M ! 20

2 V)

(2)
where v~'(x, A, B) is the normalized inverse gamma CDF
evaluated at x, with parameters A and B.

(1)
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Anderson Darling Detector (ADD) - 1/2

» The Anderson-Darling statistic is defined as
AC &

XM (2i—1)(INZi+In(1 = Zui)
M

(3)

M
with Z; = Fy(Y;), where Fy(-) is the distribution under H,.
Also, Y1 < Yo <--- < Y.

» The ADD has the following critical region

{Y,,ieM;AizTADD},
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Anderson Darling Detector (ADD) - 2/2
» For any pr = « and for moderate values of M, 7app satisfies

( (40 + 1)2
exp | ————~
oy TADD

x(44 + 1)/ exp (

8TADD )
w2 (40 + 1)
8(W2 aF 1) 87ADD )dW - (5)
or <5 =) «2» T 9DaC
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Blind Detector (BD) - 1/2

» When the noise process is i.i.d. Gaussian, the construction
of the BD is such that the test statistic is independent of 2.

» M observations are divided into n windows of m
observations each and the test statistic is constructed as
follows. Define

m—1 m—1
S lefu 2 A (lefu _X/)2
ey T SR SR (9)
u=0 u=0
X
and B2 —— [=1,--- ., m. 7
| S//\/m, ) ( )

Then, the BD has the following critical region

{Yi,ieM:B >1mpp}. (8)
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Blind Detector (BD) - 2/2

Conclusions

» It is known that when n; ~ N(0, 02), the statistic B, is
student-t distributed with parameter m — 1. Therefore, for a
given ps level «, mgp satisfies
1 10l (F) 2F (%,%’:%—
5~

7BD )
m—1
Ja(m ) (1)
with o Fy (-
function.

-) representing the Kummer’s hypergeometric
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Disadvantages of ED, ADD and BD

Both ED and ADD requires the knowledge of o2

Additionally, calculation of 7app needs evaluation of an
integral over an infinite series

The analysis of BD fails in non-gaussian noise. Extending
the same idea to other distributions is not easy.

Both ADD and BD are limited to small sample sizes.
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Basics of Zero-crossings (ZC) (1/2)
» Let VX denote the k™ order difference operator.
VY, £ Y- Yig
v2Y;

(10)
V(VY)=Yi-2Yi 1+ Y2

K
veY = Z(?)(—WY//, e M
j=0

The k" order ZC of {Y;,i € M} is defined as the number
of ZCs in VA=1Y;. Also called the Higher Order Crossing
(HOCQ), they are denoted by Dy y.
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Basics of Zero-crossings (ZC) (2/2)
» Let A;y, and p; y be defined as

D ) .: 17
A A{ DD, :
/7M_ /7M_ /_17M’

j=2,--- k-1 (13)

(M—1)—Dy—1m, j=M,
and ,u,ijéEAj’M,jZ‘l,"' K, (14)

where E(-) denotes the expectation operator. Observe that
S Ajy=M—1.

» Under Gaussian noise, it can be shown that

11 k —1
]EDK,M:(M—1){§+;S|n1 (T)}

(1 5& i 5_5
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The V2 statistic and the vSD

» The goodness-of-fit measure W%, upto a given order k is

defined as .

Ajv — wim)?
wﬁﬂéz—(f — r (16)
=1 Hj.m
» Under Gaussian noise and for moderately large M,

w2 ~ x5(11), very closely
» The WSD has a critical region

{n,ieM;wﬁ,,>TWSD}, (17)
where for a given pr level a, mygp satisfies
Q%(V 11) V T\USD) = Q, (18)(.(;\

i

with Qu (-, -) representing the Marcum-Q function of order =
M
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The mV? statistic and the mvSD (1/2)

» |t was observed through simulations that under some

cases, only first few ZCs were different under Hy and H;
» The modified W? statistic is defined as

k 2
. A — Wi
mw%’ A Zef(jf‘])( M = Hjm)
= Hjm
» The mWSD has a critical region

(19)
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The mv? statistic and the mvSD (2/2)

» Under previously stated conditions, we have observed that
mW3%, statistic follows an F-distribution with parameters 17.5
and 7 respectively. Therefore, mysp satisfies

1-1 ( 17 57mwsD

(8.75,3.5) = a, (21)
17 57musp + 7)

with Zy(a, b) representing the regularized incomplete beta
function with parameters x, a and b respectively.
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Figure: Detection performance with SNR for known signal case,
under Rayleigh fading and Laplacian noise. M = 32, a = 0.05. m
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Probability of Detection
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Figure: Detection of 4kHz sinusoidal signal, under Rayleigh fading
and Gaussian noise. M = 32, « = 0.05.
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Probability of Detection
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Figure: Detection of 4kHz sinusoidal signal, under Rayleigh fading
and Laplacian noise. M = 32, « = 0.05.
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Figure: Comparision of theoretical and simulated py values.

M =300, « = 0.05.

1

2

3

SNR (dB)

4

5

5

o

DAy
;

ZCDh




Introduction Other Tests

ZCD Simulations Conclusions

Conclusions

» Proposed a modified GoFT based on ZCs, which is robust
under noise uncertainty

» It can be readily used under Gaussian and Laplacian noise
environments
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