
Introduction Other Tests ZCD Simulations Conclusions

Zero-crossings Based Nonparametric
Goodness-of-Fit Tests for Spectrum

Sensing in Cognitive Radios under Noise
Uncertainty

Sanjeev G.
SPC Lab.,

Dept. of ECE,
IISc

07 July 2012

ZCD



Introduction Other Tests ZCD Simulations Conclusions

Goodness-of-Fit Tests (GoFT)

I In the classical Neyman-Pearson hypothesis testing, both
hypotheses are known

I In GoFT, distribution of the test statistic is known under H0
and assumed to be unknown under H1

I Examples : Tests for independence, tests for deviation
from a specific distribution under H0
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GoFT for Spectrum Sensing (SS) in CR

The choice of a GoFT depends on:
I Statistics of noise
I Knowledge of noise variance
I Number of observations
I Signal characteristics of the Primary
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Existing GoFTs in SS context

I Wang et al. [2009] - a GoFT based on the
Anderson-Darling Statistic (ADD)

I Shen et al. [2011] - a modified GoFT based on ADD and
called it the Blind Detector (BD)

I Denkovski et al. [2012] - a higher order statistic based
GoFT

I Rostami et al. [2012] - an ordered statistic based GoFT
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This work...

I We propose a new GoFT based on a modification of an
existing test using zero-crossings (Kedem et al. 1982)

I Advantages of our detector:
I Can be applied under Gaussian and Laplacian noise

distributions
I Robust to noise uncertainty
I Closed form for the optimal threshold
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System Model

I A single CR node carrying out SS with M observations.
I Under Gaussian noise, The hypothesis testing problem is

H0 : Yi ∼ N (0, σ2
n)

H1 : Yi � N (0, σ2
n)

I Under Laplacian noise, The hypothesis testing problem is

H0 : Yi ∼ L(σ2
n)

H1 : Yi � L(σ2
n)
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Energy Detector (ED)

I When σ2
n is known, the ED has the following critical region{

Yi , i ∈M :
M∑

i=1

Y 2
i > τED

}
, (1)

I When ni ∼ N (0, σ2
n),

τED = γ−1
(

1− α, M − 1
2

,
2σ2

n
M

)
, (2)

where γ−1(x ,A,B) is the normalized inverse gamma CDF
evaluated at x , with parameters A and B.
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Anderson Darling Detector (ADD) - 1/2

I The Anderson-Darling statistic is defined as

A2
c , −

∑M
i=1(2i − 1)(ln Zi + ln(1− ZM+1−i))

M
−M (3)

with Zi = F0(Yi), where F0(·) is the distribution under H0.
Also, Y1 ≤ Y2 ≤ · · · ≤ YM .

I The ADD has the following critical region{
Yi , i ∈M : A2

c ≥ τADD

}
, (4)
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Anderson Darling Detector (ADD) - 2/2

I For any pf = α and for moderate values of M, τADD satisfies

1−
√

(2π)

τADD

∞∑
`=0

(−1)`Γ(0.5 + `)

Γ(0.5)`!
exp

(
−π

2(4`+ 1)2

8τADD

)

×(4`+ 1)

∫ ∞
0

exp
(

τADD

8(w2 + 1)
− π2w2(4`+ 1)2

8τADD

)
dw =α. (5)
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Blind Detector (BD) - 1/2
I When the noise process is i.i.d. Gaussian, the construction

of the BD is such that the test statistic is independent of σ2
n.

I M observations are divided into n windows of m
observations each and the test statistic is constructed as
follows. Define

Xl ,
m−1∑
u=0

Yml−u

m
, S2

l ,
m−1∑
u=0

(Yml−u − Xl)
2

m − 1
, (6)

and Bl ,
Xl

Sl/
√

m
, l = 1, · · · ,m. (7)

Then, the BD has the following critical region

{Yi , i ∈M : Bl ≥ τBD} . (8)
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Blind Detector (BD) - 2/2

I It is known that when ni ∼ N (0, σ2
n), the statistic Bl is

student-t distributed with parameter m − 1. Therefore, for a
given pf level α, τBD satisfies

1
2
−
τBD Γ

(m
2

)
2F1

(
1
2 ,

m
2 ; 3

2 ;− τ2
BD

m−1

)
√
π(m − 1)Γ

(m−1
2

) = α, (9)

with 2F1(·; ·; ·) representing the Kummer’s hypergeometric
function.
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Disadvantages of ED, ADD and BD

I Both ED and ADD requires the knowledge of σ2
n

I Additionally, calculation of τADD needs evaluation of an
integral over an infinite series

I The analysis of BD fails in non-gaussian noise. Extending
the same idea to other distributions is not easy.

I Both ADD and BD are limited to small sample sizes.
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Basics of Zero-crossings (ZC) (1/2)

I Let ∇k denote the k th order difference operator.

∇Yi , Yi − Yi−1 (10)
∇2Yi = ∇(∇Yi) = Yi − 2Yi−1 + Yi−2 (11)

...

∇kYi =
k∑

j=0

(
k
j

)
(−1)jYi−j , i ∈M (12)

The k th order ZC of {Yi , i ∈M} is defined as the number
of ZCs in ∇k−1Yi . Also called the Higher Order Crossings
(HOC), they are denoted by Dk ,M .
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Basics of Zero-crossings (ZC) (2/2)
I Let ∆j,M , and µj,M be defined as

∆j,M ,


D1,M , j = 1,
Dj,M − Dj−1,M , j = 2, · · · , k − 1
(M − 1)− Dk−1,M , j = M,

(13)

and µj,M , E∆j,M , j = 1, · · · , k , (14)

where E(·) denotes the expectation operator. Observe that∑k
j=1 ∆j,M = M − 1.

I Under Gaussian noise, it can be shown that

EDk ,M = (M − 1)

{
1
2

+
1
π

sin−1
(

k − 1
k

)}
, (15)
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The Ψ2 statistic and the ΨSD
I The goodness-of-fit measure Ψ2

M upto a given order k is
defined as

Ψ2
M ,

k∑
j=1

(∆j,M − µj,M)2

µj,M
. (16)

I Under Gaussian noise and for moderately large M,
Ψ2

M ∼ χ
2
3(11), very closely

I The ΨSD has a critical region{
Yi , i ∈M : Ψ2

M > τΨSD

}
, (17)

where for a given pf level α, τΨSD satisfies

Q 3
2
(
√

11,
√
τΨSD) = α, (18)

with QM(·, ·) representing the Marcum-Q function of order
M.
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The mΨ2 statistic and the mΨSD (1/2)

I It was observed through simulations that under some
cases, only first few ZCs were different under H0 and H1

I The modified Ψ2 statistic is defined as

mΨ2
M ,

k∑
j=1

e−(j−1) (∆j,M − µj,M)2

µj,M
(19)

I The mΨSD has a critical region{
Yi , i ∈M : mΨ2

M > τmΨSD

}
, (20)
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The mΨ2 statistic and the mΨSD (2/2)

I Under previously stated conditions, we have observed that
mΨ2

M statistic follows an F-distribution with parameters 17.5
and 7 respectively. Therefore, τmΨSD satisfies

1− I( 17.5τmΨSD

17.5τmΨSD + 7

)(8.75,3.5) = α, (21)

with Ix (a,b) representing the regularized incomplete beta
function with parameters x ,a and b respectively.
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Figure: Detection performance with SNR for known signal case,
under Rayleigh fading and Gaussian noise. M = 32, α = 0.05.
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Figure: Detection performance with SNR for known signal case,
under Rayleigh fading and Laplacian noise. M = 32, α = 0.05.
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Figure: Detection of 4kHz sinusoidal signal, under Rayleigh fading
and Gaussian noise. M = 32, α = 0.05.
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Figure: Detection of 4kHz sinusoidal signal, under Rayleigh fading
and Laplacian noise. M = 32, α = 0.05.
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Figure: Comparision of theoretical and simulated pd values.
M = 300, α = 0.05.
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Conclusions

I Proposed a modified GoFT based on ZCs, which is robust
under noise uncertainty

I It can be readily used under Gaussian and Laplacian noise
environments
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