- (1) Distinct values in an iid sequence
 - Let X_1, \ldots, X_n be iid random variables taking positive integer values, and let Z_n be the number of distinct values taken by these random variables.
 - (a) Show that $\lim_{n\to\infty} \mathbb{E}[Z_n/n] = 0$, or in other words, $\mathbb{E}[Z_n/n] = o(n)$.
 - (b) Does Z_n satisfy the bounded differences property? If so, what can you conclude about the variance of Z_n (as a function of n)?
 - (c) Show that Z_n is in fact a self-bounding function. What can you now conclude about its variance as a function of n? Compare this to the conclusion of the previous part.
- (2) Order Statistics and variance

Let X_1, \ldots, X_n be a sequence of independent random variables, and $X_{(1)} \leq X_{(1)} \leq \cdots \leq X_{(n)}$ a sorted version of the sequence $(X_{(i)}$ is known as the *i*-th order statistic).

- (a) Show that $\operatorname{Var}[X_{(n)}] \leq \mathbb{E}\left[\left(X_{(n)} X_{(n-1)}\right)^2\right].$
- (b) Compute the LHS and RHS of the inequality above, when all the X_i are iid Exponential(1).
- (c) Repeat for all the X_i iid Uniform([0, 1]).
- (3) Jackknife estimators

Let X_1, \ldots, X_n be an iid sequence of random variables (a "sample" of size nin statistics terminology). Suppose one has designed, for any n, an estimator $T_n \equiv T_n(X_1, \ldots, X_n)$ for a scalar parameter $\theta \in \mathbb{R}$ of the common probability distribution of the X_i . One often wants to know the quality of the estimator T_n (using only the sample). The jackknife is a method to estimate the bias $\mathbb{E}[T_n] - \theta$ and variance $\mathbb{E}[(T_n - \mathbb{E}[T_n])^2]$ of the estimator T_n .

For each $i \in [n]$, define the *i*th *pseudo-value*

$$Y_i := n T_n(X_1, \dots, X_n) - (n-1) T_{n-1}(X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n).$$

The jackknife estimate of the bias of T_n is defined to be the difference between T_n and the sample mean of the pseudo-values, i.e., $\hat{B}_n := T_n - \frac{1}{n} \sum_{i=1}^n Y_i$, while the jackknife estimate of the variance of T_n is defined to be the sample variance of the pseudo-values Y_i , i.e., $\hat{V}_n := \frac{1}{n-1} \sum_{i=1}^n \left(Y_i - \frac{1}{n} \sum_{j=1}^n Y_j\right)^2$. (The general principle is to imagine the pseudo values Y_i as representing "iid copies of T_n " and compute standard statistics on them.)

- (a) Compute the jackknife estimate of the bias of the sample mean estimator $T_n := \frac{1}{n} \sum_{i=1}^n X_i$.
- (b) For any estimator T_n , show that \hat{V}_n , the jackknife estimator of the variance of T_n , is always positively biased, i.e., $\mathbb{E}\left[\hat{V}_n\right] \operatorname{Var}[T_n] \ge 0$.

(4) Gradients of Lipschitz functions

Show that if a function $f : \mathbb{R}^n \to R$ is Lipschitz, with respect to the standard Euclidean norm on \mathbb{R}^n , and differentiable, then the norm of its gradient is bounded by 1.

(5) Log-Sobolev is stronger than Poincaré

Let $f : \mathbb{R}^n \to R$ be a bounded, continuously differentiable function. Show that the Gaussian logarithmic Sobolev inequality for f(X), with $X \sim \mathcal{N}(0, I_{n \times n})$, implies the Gaussian Poincaré inequality for f(X).

(6) Log-Sobolev for the exponential distribution

Let X be an exponentially distributed random variable with parameter 1, and let $f: [0, \infty) \to \mathbb{R}$ be a continuously differentiable function. Show that $\operatorname{Ent}(f(X)^2) \leq 4\mathbb{E}[X(f'(X))^2]$.