(1) Quantiles of a monotone set

Let $A \subseteq\{-1,1\}^{n}$ be a monotone set. Denote $p_{\theta}=\inf \left\{p: P_{p}(A) \geq \theta\right\}$. Show that if $p_{1 / 2}=1 / 2$, there exists a universal constant $c>0$ such that $p_{3 / 4}-p_{1 / 4} \geq c / \sqrt{n}$.
(2) Concentration and influence

Let $A \subseteq\{-1,1\}^{n}$ and let X be uniformly distributed on $\{-1,1\}^{n}$. Let $d_{H}(x, A)$ denote the Hamming distance of $x \in\{-1,1\}^{n}$ to the set A. Prove that

$$
\mathbb{E} d_{H}(X, A) \leq \frac{I(A)}{2 P(A)}
$$

(3) Talagrand's convex distance - equivalent definitions

Recall the definition of Talagrand's distance between a point $x \in \mathcal{X}^{n}$ and $A \subseteq \mathcal{X}^{n}$: $d_{T}(x, A):=\sup _{\|\alpha\|=1} \inf _{y \in A} d_{\alpha}(x, y)=\sup _{\|\alpha\|=1} \inf _{y \in A} \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{\left\{x_{i} \neq y_{i}\right\}}$. Prove the following equivalent characterization of d_{T}.

Let $U(A, x):=\left\{\left(s_{1}, \ldots, s_{n}\right) \in\{0,1\}^{n}: \exists y \in A \forall i x_{i} \neq y_{i} \Rightarrow s_{i}=1\right\}$. (What do you think $U(A, x)$ represents?). Then, $d_{T}(x, A)$ is the least distance between the origin and a point in the convex hull of $U(A, x)$. (This is the reason for the name "convex distance".)
(4) Concentration of Lipchitz functions in set-distance

Let $d(x, A)$ denote the distance of x from a set A, namely d is a nonnegative function of $x \in \mathcal{X}$ and $A \subseteq \mathcal{X}$ such that $d(x, A)=0$ iff $x \in A$. We say that a function $f: \mathcal{X} \rightarrow \mathbb{R}$ is Lipchitz in d if $f(x) \leq d(x, A)+\sup _{y \in A} f(y)$. Show that Levy's inequalities hold for any function f Lipchitz in d. Furthermore, show that Talagrand's convex distance constitutes a set distance in the sense described above. Finally, derive the concentration bounds for Lipchitz functions in d_{T} around their medians.
(We did most of this in class; just some clean-up is required.)
(5) Distance between sets

Let P be a product probability measure on \mathcal{X}^{n}. Let $d_{H}(A, B)=\min _{x \in A, y \in B} d_{H}(x, y)$ denote the Hamming distance between two sets $A, B \subseteq \mathcal{X}^{n}$. Show that

$$
d_{H}(A, B) \leq \sqrt{\frac{n}{2} \log \frac{1}{P(A)}}+\sqrt{\frac{n}{2} \log \frac{1}{P(B)}}
$$

(6) Maximum measurement

Let $X_{1}, . ., X_{n}$ be iid with common distribution unif $([0, a])$. Let A be a fixed $m \times n$ matrix consisting of nonnegative real entries. Derive concentration bounds for $\max _{1 \leq i \leq m}(A x)_{i}$ using McDiarmid's inequality, the Enropy method, Talagrand's convex distance inequality, and the Transportation cost method. Derive bounds for both upper and lower tails.

