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Abstract—It is known that a processor with limited memory
consisting of an m-state machine can distinguish two coins with
biases that differ by 1/m. On the other hand, the best additive
accuracy with which the same processor can estimate the bias
of a coin is only 1/

√
m. We demystify this apparent shrinkage

in memory by showing that for any such estimator using an m-
state machine, there exist two values of the bias that are 1/

√
m

apart but for which the effective number of states available
to resolve them is only O(

√
m). Building on this result, we

show that the number of bits of memory required to estimate
a bias in the interval (a, a2α) with a multiplicative accuracy
of 2±δ is log(α/δ2), up to an additive constant. In fact, we
show that the lower bound is attained by a Gaussian counter,
namely a probabilistic counter whose stationary distribution
has a Gaussian form. This gives a precise characterization of
memory-complexity of bias estimation along with a heuristically
appealing family of optimal estimators. Underlying our results
are new bounds for estimation of the natural parameter of a
discrete exponential family, which maybe of independent interest.

I. INTRODUCTION

How much memory is required to estimate the bias of a
coin? When the bias can only take one of two values differing
by ε, a fundamental result of Cover and Hellman [7] shows
that one needs a finite-state machine with at least O(1/ε)
states. On the other hand, when the bias can take any value in
the interval [0, 1], a seminal work of Leighton and Rivest [8]
shows that to estimate the bias up to an additive accuracy of
ε, one needs at least O(1/ε2) states. Thus, there is a shrinkage
in the effective memory available for estimation as the domain
of possible values of the bias increases. Furthermore, in both
these works the optimal estimators are probabilistic counters,
albeit of seemingly different forms.

We demystify the memory shrinkage phenomenon by show-
ing that when estimating the unknown bias p from the interval,
say, [1/3, 1/2] using an m-state machine, the effective number
of states available is only O(

√
m). Specifically, we show that

for any estimator with m states, there exist values of p and
p′ of the bias such that |p − p′| is more than 1/

√
m, but

the effective support sets of their equilibrium distributions are
contained in a set of cardinality O(

√
m). In fact, the result

we derive is much stronger and gives a bound for effective
memory available as a function of the size of the uncertainty
interval of the bias.

The memory shrinkage result further implies a lower bound
for the memory (in bits) required to estimate an unknown bias
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in the interval [a, a2α] up to a desired multiplicative accuracy.
Interestingly, we show that this lower bound is attained by a
class of simple probabilistic counters, termed the Gaussian
counter, where the equilibrium distribution has a discrete
Gaussian form. We depict a canonical probabilistic counter
for our problem in Figure 1; the specific Gaussian counter that
optimally solves our proposed problem is obtained by using
ais given in (14) below.

The counters prescribed in the works of Cover and Hellman
and Leighton and Rivest can be recovered as special cases
of our general estimator. Furthermore, we strengthen those
results by providing an estimator that provides a desired
multiplicative accuracy (in contrast to the additive accuracy
guarantee considered in these works) and can incorporate the
knowledge of the domain of the unknown bias.

Our treatment is based on a reduction of the memory
limited estimation problem to a problem of estimation of
the natural parameter of an exponential family. Unlike the
standard version of this problem studied in the classic statistics
literature, we are now allowed to choose any constants for
the exponential family. This reduction is based on the Markov
chain tree theorem of [8] which gives a closed-form expression
for the equilibrium distribution of a Markov chain and reveals
the exponential form we exploit.

Memory limited estimation has a long history and
was studied in both information theory and computer
science communities, perhaps with different motivations
(see [7], [8], [5], [6], [4]). While this classic thread seems
to have faded, related problems have been considered in the
context of streaming algorithms (see, for instance, [1]) and in
the context of communication constrained distributed inference
(cf. [9]). We revisit this classic field motivated by applications
arising in IoT where the end sensor devices are memory
starved with only 100s of KB of RAM available to them. Our
work here is a first step towards realizing machine intelligence,
at least in part, on such edge devices.

Our main results, including the reduction to the exponential
family and the memory shrinkage theorem, are given in the
next section. Section III gives a proof of the memory shrinkage
theorem and the resulting lower bound. Section IV gives the
optimal estimator and, in particular, shows the optimality of
Gaussian counters. The final section contains discussion on
ongoing work and extensions.

II. FORMULATION AND MAIN RESULTS

Let {Xt}∞t=1 denote an independent and identically dis-
tributed sequence with each Xi a Ber(p) random variable,
where p ∈ [0, 1] is unknown. A memory-limited estimator



for p consists of a time-invariant Markov chain with a finite
state space M where the state transition at time t can depend
on Xt. Formally, an m-state estimator for p is a tuple E =
(Π0, T0, T1, p̂) where Π0 is a distribution on the state space
M = {1, ...,m}, T1 and T2 are two transition probability
matrices (TPMs), and p̂ is a mapping from M to [0, 1]. To
estimate p using E , we start with the initial distribution Π0

on M, and make a transition from state i to j at time t with
probability TXt(i, j); the overall process is a Markov chain
Mp with TPM Tp = pT1 + (1 − p)T0. At time t, we can
obtain an estimate of p as p̂(Mp(t)) where Mp(t) is the state
of Markov chain at time t.

We are interested in the limiting behavior of this estimator
as t goes to infinity. This limiting behavior is determined by
the long term transition probabilities of the Markov chain Tp,
which in turn are given by the matrix

T p = lim
t→∞

1

t

∑
i∈[t]

T i−1
p .

Specifically, the limiting behavior of E is captured by the
estimate p̂(Mp(∞)) of p, where Mp(∞) is a random variable
with distribution Π0T p.

In the section below, we note that the optimal estimator has
a very simple structure, roughly that of a counter. Using this
structural result, we next observe that the memory constraint
estimation problem is essentially equivalent to that of esti-
mating the natural parameter of a discrete exponential family
with support size m, and designing an m-state estimator is
tantamount to defining the constants of the exponential family.

A. Memory constraint estimation to parametric estimation

We closely follow the approach in [8]; in particular, we
rely on the Markov chain tree theorem of [8] (see [2] for
an alternative proof) to obtain a closed-form expression for
πp = Π0T p. This result states that πp(i) is proportional to
the sum of weights of the spanning trees of the directed graph
representing the Markov transition matrix with root at i, where
the weight of a tree is the product of probabilities on the edges
of the tree. An application of the Markov chain tree theorem
yields the following form for πp (cf. [8])

πp(j) =

∑
i∈[m]

aijp
i−1(1− p)m−i∑

i∈[m]

∑
j∈[m]

aijpi−1(1− p)m−i
, (1)

where ai,j ≥ 0 for all i, j ∈ M. Note that states with ai :=∑
j∈[m]

aij = 0 have probability πp(i), and so, we can assume1

ai > 0 for all i ∈M.
Our first observation is that it suffices to focus on proba-

bilistic counters, namely estimators for which the underlying
Markov chain, when at state i, either moves to (i + 1) with
some probability pi on observing heads or (i− 1) with some
probability qi on observing tails. To state our result, we

1Performance corresponding to ai = 0 can be attained by putting an setting
ai = η and making η arbitrarily small.
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Fig. 1. A probabilistic counter with πp of the form (3). Here c denotes
1/max{a1, a2/a1, ..., am/am−1, 1}. The counter is increased probabilis-
tically on observing heads or decreased probabilistically on observing tails.

recall a notion of Blackwell [3] which allows us to compare
two experiments. Specifically, an experiment described by a
parametric family P = {Pθ, θ ∈ Θ} on X is better than
Q = {Qθ, θ ∈ Θ} on Y iff we can find a channel W : X → Y
such that Qθ is the distribution of the output of the channel
when the input is distributed as Pθ. When P is better than Q,
a decision based on P will outperform that based on Q for
any loss function.

Proposition 1 (Counters are optimal). Given an estimator E ,
we can find a probabilistic counter Ec such that Ec is better
than E .

To prove this result, we need the following characterization
of πp for probabilistic counters.

Lemma 2. For a probabilistic counter E , the distribution πp
is of the form

πp(i) =
aip

i−1(1− p)m−i∑
j∈[m]

ajpj−1(1− p)m−j
, ∀ i ∈M, (2)

where ai > 0 for all i.
Conversely, for every pmf P of the form (2), we can find a

probabilistic counter E such that πp = P.

The proof follows from (1) – a probabilistic counter for
which πp has the form in (2) is given in Figure 1 .

Proof of Proposition 1. For a given estimator E , let πp be
given by (1). Let channel W :M→M be given by W (j|i) =
aij/ai. Then, πp is the output distribution of W when the
input distribution is given by (2), whereby the latter family
of distributions is better than the former. But by Lemma 2
the distribution in (2) corresponds to the probabilistic counter
given in Figure 1, which proves the claim.

Therefore, it suffices to search for an optimal estimator in
the class of probabilistic counters. Note that upon substituting
θ = p/(1−p), the parametric family in (2) can be re-expressed
as

πp(i) =
aiθ

i−1∑
j∈[m]

ajθj−1
, (3)

namely a discrete exponential family with natural parameter
log θ. Furthermore, for θ(p) = p/(1− p),

1

2

∣∣∣ log
θ(p̂)

θ

∣∣∣ ≤ max
{∣∣∣ log

p̂

p

∣∣∣, ∣∣∣ log
1− p
1− p̂

∣∣∣} ≤ ∣∣∣ log
θ(p̂)

θ

∣∣∣.



Thus, in view of Proposition 1 and Lemma 2, the problem
of estimating the bias of a coin with multiplicative accuracy
using an m-state estimator is essentially equivalent to that of
estimating with additive accuracy the natural parameter of the
discrete exponential family (3) on [m]. In particular, we need
to find the exponential family in this class (design constants
ais) that yields the least approximation error for a fixed m.
From here on, we simply consider this alternative problem.

B. Estimation of natural parameter

Distributions corresponding to 3, can be expressed as an
exponential family P = {Pθ, θ > 0} with support {1, ...,m}
where

Pθ (i) = c(θ)aiθ
i, (4)

for some ai > 0 and c(θ) denoting the normalizing constant
(that depends on ais). Suppose that we know a priori that θ
belongs to an interval Ia,α = [a, a2α] for a > 0 and α > 0. We
consider a probably approximately correct (PAC) formulation
for estimating θ in Ia,α by observing a sample from Pθ. The
parameter of the family that we get to design is the vector
(a1, ..., am). Specifically, denoting by M ∈ [1,m] a sample
from Pθ, the minimax probability of error for estimating θ is
given by2

ε(m,α, δ) = inf
(a1,...,am)

sup
θ∈Ia,α

P

(∣∣∣∣∣log
θ̂(M)

θ

∣∣∣∣∣ ≥ δ
)
.

We are interested in the quantity C(ε, α, δ) defined to be
the least value of logm such that ε(m,α, δ) ≤ ε. Note that
in view of the discussion of the previous section, C(ε, α, δ)
represents the memory-complexity of estimating p, namely
memory required in bits estimating p.

We now prove a memory shrinkage theorem, but we describe
it in the context of the exponential family given in (4).

To describe the result, we define the t-essential upper bound
for a random variable X by

uX(t) = sup
{
x : P (X ≥ x) ≥ 2−t

}
,

and the t-essential lower bound bound for X by

lX(t) = inf
{
x : P (X ≤ x) ≥ 2−t

}
.

Note that the effective support-size of X is uX(t) − lX(t),
or equivalently we can talk about the size of the support of
distribution of X . For a distribution Pθ from the exponential
family (4) with fixed constants (a1, ..., am), let uθ(t) and lθ(t),
respectively, denote3 the t-essential upper and lower bounds
for Pθ.

Theorem 3 (Memory shrinkage theorem). Given an interval
Ia,α and an exponential family of the form (4), for every 0 <

2We omit the dependence on a in our notation since the minimax error
doesn’t depend on it.

3For brevity, we have omitted the dependence of uθ and lθ on (a1, ..., am)
from our notation.

δ <
√
α/m there exists a θ ∈ Ia,α such that

max{u2δθ(t), uθ(t)} −min{l2δθ(t), lθ(t)} ≤ (2t+ 7)

√
m

α
.

(5)

In particular, there exist θ ∈ [ 1
2 , 1] and θ′ > θ+ 1√

m
such that

max{uθ′(t), uθ(t)} −min{lθ′(t), lθ(t)} ≤ (2t+ 7)
√
m. (6)

Remark 1. It follows from (6) that there exist two biases
p, p′ in (1/3, 1/2) that are at least 1/

√
m apart for which the

supports of πp′ and πp are contained in a set of cardinality
O(
√
m).

As a corollary, we obtain the following bound for the
divergence between Pθ and P2δθ.

Corollary 4. Given an interval Ia,α, an exponential family of
the form (4), and 0 < δ <

√
α/m, there exists θ ∈ Ia,α such

that θ1 = 2δθ satisfies

D(Pθ‖Pθ1) ≤ c · mδ
2

α
,

where c > 0 is a constant independent m, a, α, δ, and the
constants (a1, ..., am) of the exponential family.

The proof of Theorem 3 and Corollary 4 are given in
Section III.

The corollary above yields a difficult pair of hypothesis
with a small distance between the observed distributions.
Combining this with Le Cam’s two point method, we obtain a
lower bound for C(ε, α, δ). Note that we need an Ω(

√
α/m)

lower bound for δ, and therefore, we can make the assumption
δ <

√
α/m needed for Corollary 4.

In fact, we can find an estimator attaining this lower bound
up to a constant gap (depending mildly only on ε). The
following result is obtained.

Theorem 5. For every ε ∈ (0, 1/4),0 < a, 0 < α, and 0 < δ,

C(ε, α, δ) = log
α

δ2
+O(log log

1

ε
).

The optimal choice of (a1, ..., am) and the analysis for the
corresponding family (4) is given in Section IV. Interestingly,
for the corresponding exponential family, the distribution Pθ
has a Gaussian form – we term the corresponding probabilistic
counter a Gaussian counter. Thus, Gaussian counters attain the
bound promised in Theorem 5 and are order-wise optimal.

III. THE PROOF OF MEMORY SHRINKAGE THEOREM AND
LOWER BOUNDS

Fix the exponential family P to be that given in (4). All our
proofs in This section rely on the following property of P:

Pθ2(i)

Pθ1(i)
=
θ2

θ1

i−j Pθ2(j)

Pθ1(j)
. (7)

In fact, we only need the lower bound on left-side implied
by (7), along with the following property of monotonicity of
family in the first-order stochastic dominance.



Lemma 6 (Monotonicity). For any fixed k ∈ [m], Pθ(M ≥ k)
is a nondecreasing function of θ.

We skip the proof, which uses (7). As a simple corollary of
this monotonicity property, we obtain the monotonicity of t-
essential upper and lower bounds uθ(t) and lθ(t), respectively.

Lemma 7. For any fixed t ≥ 1, lθ(t) and uθ(t) are nonde-
creasing functions of θ.

Note that uθ(1) = lθ(1) corresponds to the median of M
under Pθ. As we increase t, uθ(t) and lθ(t) deviate and satisfy
Pθ(M ∈ [lθ(t), uθ(t)]) is at least 1 − 2/2t. The next lemma
provides a bound on how fast uθ(t) and lθ(t) move away from
the median of Pθ – the speed is logarithmic in t. In fact, we
show a stronger bound, which we need, where we bound the
deviation from the medians of Pθ′ where θ′ can be a factor γ
away from θ.

Lemma 8 (Spread of quantiles). For a γ > 1, we have

uθ(t) ≤ uθγ(1) +
t+ 2

log(γ)
, and (8)

lθ(t) ≥ uθ/γ(1)− t+ 2

log(γ)
. (9)

Proof. For any θ, θ′ ∈ [a, a2α],

Pθ′(M ≤ uθ′(1))

Pθ(M ≤ uθ′(1))
≥ 1/2.

Thus, we can find j ≤ uθ′(1) such that
Pθ′(j)

Pθ(j)
≥ 1/2. Then,

setting θ′ = γθ and using (7), for every i ≥ uθ′(1) + l we get
Pθ′(i)

Pθ(i)
≥ γl/2, whereby

Pθ(M ≥ uθ′(1) + l) ≤ 2

γl
Pθ′(M ≥ uθ′(1) + l).

In particular, upon setting l = (t + 2)/ log γ we get (8); the
bound in (9) can be shown similarly.

Proof of Theorem 3. We have form Lemma 8 that

uγθ(t)− lθ(t) ≤ uγ2θ(1)− uθ/γ(1) +
2t+ 4

log(γ)
.

Thus, in view of Lemma 7 and the inequality above, Theo-
rem 3 will be obtained upon substituting γ = 2

√
α/m if we

can exhibit a θ ∈ [a, a2α] such that

uγ2θ(1)− uθ/γ(1) ≤ 3m log γ

α
. (10)

Indeed, such a θ can be found. Let θ0 = a and θi = γ3i,
i = 1, ..., N where N = bα/3 log γc. The required θ is found
upon noting that

1

N − 1

N−1∑
i=1

uθi+1
(1)− uθi(1) =

uθN (1)− uθ1(1)

N − 1
≤ m− 1

N − 1
.

To prove (6), fix a = 1/2, α = 1, and γ = 1/
√
m and note

that (21/
√
m−1) is O(1/

√
m), whereby 2γθ−θ is O(1/

√
m).

Proof of Corollary 4. We will show a weaker upper bound
of O(

√
mδ2/α); the square improvement claimed in Corol-

lary 4 is obtained using a Taylor series approximation of KL
divergence and is skipped here due to lack of space.

To that end, we show that for a θ satisfying (5) and i ∈
[lθ(t), uθγ(t)]

log
Pθ(i)

P2δθ(i)
< (2t+ 29)

√
mδ2

α
. (11)

Then,

Pθ

({
i : log

Pθ(i)

Pβθ(i)
> (2t+ 29)

√
mδ2

α

})
≤ 1

2t−1
,

and so,

D(Pβθ||Pθ) = EM∼Pθ
{

ln
Pθ(M)

Pβθ(M)

}
= O

(√
mδ2

α

)
,

which proves Corollary 4.
It remains to prove (11), which will follow upon showing

that
Pθ(lθ(1))

P2δθ(lθ(1))
< 222

√
mδ2

α . (12)

Indeed, since every i ∈ [lθ(t), u2δθ(t)] satisfies |i − lθ(1)| <
(2t+ 7)

√
m/α, by (7) we get

Pθ(i)

P2δθ(i)
≤ 2δ(2t+7)

√
m/α Pθ(lθ(1))

P2δθ(lθ(1))
(13)

≤ 2δ(2t+29)
√
m/α.

Finally, we complete the proof by showing (12). We note some
basic properties of the intervals It defined by

I(t) = [lθ(t), u2δθ(t)].

Specifically, note that
(i) The sequence of intervals {I(t), t ≥ 1} is is nondecreas-

ing, i.e., I(t− 1) ⊂ I(t), t ≥ 2;
(ii) I(t)c has exponentially small mass, i.e.,

Pθ(I(t)) ≥ 1− 2−t, t ≥ 2;

(iii) by (13),

P2δθ(I(t) \ I(t− 1)) ≥ f(t)Pθ(I(t) \ I(t− 1)),

where
f(t) =

Pθ(lθ(1))

P2δθ(lθ(1))
2−(2t+7)

√
mδ2/α.

Note that f(t) is decreasing in t. From these properties, we

derive an upper bound for c =
Pθ(lθ(1))

P2δθ(lθ(1))
as follows:

1 = P2δθ(I(2)) +
∑
t≥2

P2δθ(I(t) \ I(t− 1))

≥ f(2)Pθ(I(2)) +
∑
t>2

f(t)Pθ(I(t) \ I(t− 1)).



Furthermore, for every t > 2,

f(t)Pθ(I(t) \ I(t− 1))

=
f(t)

2t
+ f(t)[Pθ(I(t))− 2−t]

− f(t)[Pθ(I(t− 1))− 2−t−1]

≥ f(t)

2t
+ f(t)[Pθ(I(t))− 2−t]

− f(t− 1)[Pθ(I(t− 1))− 2−t−1].

On combining the two bounds above, we get

1 ≥
∑
t≥2

f(t)

2t−1

= c
∑
t≥2

2−(2t+7)
√
mδ2/α−t+1

= c
2−11
√
mδ2/α−1

1− 2−2
√
mδ2/α−1

,

whereby

c ≤ 2.211
√
mδ2/α − 29

√
mδ2/α ≤ 222

√
mδ2/α,

where the previous inequality uses 2x − 1 ≤ x2. Thus, we
have established (12), and the proof is complete.

IV. OPTIMAL ESTIMATOR

Define ∆ = (2/δ) log(4/ε) and assume it to be an integer
for simplicity. For i in the set {1, ...,m}, let

ai =

{
2−

δ(i−1)2

2∆ a−(i−1), i mod ∆ = 1

η, otherwise,
(14)

where η is chosen to be arbitrarily small. Then, for θk = a2kδ:

Pθk(j∆ + 1) ∝
( ε

4

)j2−2kj

∝
( ε

4

)(j−k)2

.

Note that in the limit as η goes to 0, Pθ(M 6= k∆ + 1) ≤ ε.
Consider the estimate θ̂ that simply declares the estimate of θ
as a2(i−1)δ/∆ when ∆ divides (i−1) and an arbitrary estimate,
say a, otherwise. Then, when θ = θk, Pθk(θ̂(M) = θ) ≥ 1−ε.
Also, using the monotonicity property given in Lemma 6, for
θ < θk

Pθ(M ≥ k∆ + 2) ≤ Pθk(M ≥ k∆ + 2) ≤ ε

2
,

which implies that

Pθ(θ̂(M) > θk) ≤ ε

2
,

Similarly, when θ > θk−1, Pθ(M ≤ (k − 1)∆) ≤ ε
2 which

implies that
Pθ(θ̂(M) < θk−1) ≤ ε

2
.

Therefore, for every θ ∈ [θk−1, θk], our proposed estimator
outputs either θk−1 or θk with probability greater than 1− ε.

Also, the number of states m required for this estimator to
work for all θ ∈ [a, a2α] must satisfy

m

∆
≥ α

δ
. (15)

Thus, this estimator needs m = O(
α log(1/ε)

δ2
) and matches

the bound claimed in Theorem 5.
Note that the probability of state i under θk has the Gaussian

form

logPθk(i) = −c1(i− k)2 + c2, (i− 1) mod ∆ = 0.

Thus, we call the counter corresponding to (14) a Gaussian
counter (see Figure 1 for a possible choice for the optimal
probabilistic counter).

We close with the remark that this seemingly ad-hoc prob-
abilistic counter has been constructed in an attempt to ensure
that the inequality in (10) is satisfied with equality for all θ.

V. DISCUSSION

While Theorem 5 provides a rather complete character-
ization of the memory required for estimating the bias of
an unknown bit, a nagging gap that remains is obtaining a
lower bound that reflects the optimal dependence on ε. Indeed,
we conjecture that Gaussian counters outperform any other
probabilistic counter and, therefore, expect the O(log log ε)
dependence on ε is tight as well.

It is of interest to consider the general problem of estimating
a discrete pmf on a k-ary alphabet within a desired total varia-
tion distance. Our preliminary work suggests that the shrinkage
phenomenon is restricted to the problem of estimating the bias
of a bit, and once we account for that, the memory scales
as (k − 1) log 1/δ. Showing this result formally is work in
progress.

REFERENCES

[1] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approx-
imating the frequency moments,” in Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing. ACM, 1996, pp.
20–29.

[2] V. Anantharam and P. Tsoucas, “A proof of the markov chain tree
theorem,” Stochastic and Probability letters, pp. 189–192, June 1989.

[3] D. Blackwell et al., “Comparison of experiments,” in Proceedings of the
second Berkeley symposium on mathematical statistics and probability.
The Regents of the University of California, 1951.

[4] T. Cover and M. Hellman, “The two-armed-bandit problem with time-
invariant finite memory,” IEEE Transactions on Information Theory,
vol. 16, no. 2, pp. 185–195, 1970.

[5] T. M. Cover, “Hypothesis testing with finite statistics,” The Annals of
Mathematical Statistics, pp. 828–835, 1969.

[6] M. Hellman, “Finite-memory algorithms for estimating the mean of
a gaussian distribution (corresp.),” IEEE Transactions on Information
Theory, vol. 20, no. 3, pp. 382–384, 1974.

[7] M. E. Hellman and T. M. Cover, “Learning with finite memory,” The
Annals of Mathematical Statistics, pp. 765–782, 1970.

[8] F. Leighton and R. Rivest, “Estimating a probability using finite memory,”
IEEE Transactions on Information Theory, vol. 32, no. 6, pp. 733–742,
1986.

[9] O. Shamir, “Fundamental limits of online and distributed algorithms for
statistical learning and estimation,” in Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Systems - Volume 1,
ser. NIPS’14, 2014, pp. 163–171.


