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ABSTRACT
A simulation of an interactive protocol entails the use of in-
teractive communication to produce the output of the proto-
col to within a fixed statistical distance ". Recent works have
proposed that the information complexity of the protocol
plays a central role in characterizing the minimum number
of bits that the parties must exchange for a successful simula-
tion, namely the distributional communication complexity of
simulating the protocol. Several simulation protocols have
been proposed with communication complexity depending
on the information complexity of the simulated protocol.
However, in the absence of any general lower bounds for dis-
tributional communication complexity, the conjectured cen-
tral role of information complexity is far from settled. We
fill this gap and show that the distributional communication
complexity of "-simulating a protocol is bounded below by
the "-tail �

"

of the information complexity density, a random
variable with information complexity as its expected value.
For protocols with bounded number of rounds, we give a
simulation protocol that yields a matching upper bound.
Thus, it is not information complexity but �

"

that governs
the distributional communication complexity.

As applications of our bounds, in the amortized regime
for product protocols, we identify the exact second order
term, together with the precise dependence on ". For gen-
eral protocols such as a mixture of two product protocols or
for the amortized case when the repetitions are not indepen-
dent, we derive a general formula for the leading asymptotic
term. These results sharpen and significantly extend known
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results in the amortized regime. In the single-shot regime,
our lower bound sheds light on the dependence of communi-
cation complexity on ". We illustrate this with an example
that exhibits an arbitrary separation between distributional
communication complexity and information complexity for
all su�ciently small ".

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of algorithms
and problem complexity—General

Keywords
Information complexity, simulation of protocols, interactive
protocols

1. INTRODUCTION
Two parties observing random variables X and Y seek to

run an interactive protocol ⇡ with inputs X and Y . The
parties have access to private as well as shared public ran-
domness. What is the minimum number of bits that they
must exchange in order to simulate ⇡ to within a fixed sta-
tistical distance "? This question is of importance to the
theoretical computer science as well as the information the-
ory communities. On the one hand, it is related closely to
the communication complexity problem [44], which in turn
is an important tool for deriving lower bounds for computa-
tional complexity [24] and for space complexity of streaming
algorithms [2]. On the other hand, it is a significant gen-
eralization of the classical information theoretic problem of
distributed data compression [38], replacing data to be com-
pressed with an interactive protocol and allowing interactive
communication as opposed to the usual one-sided commu-
nication.

In recent years, it has been argued that the distributional
communication complexity for simulating a protocol ⇡ is
related closely to its information complexity1 IC(⇡) defined

1For brevity, we do not display the dependence of IC(⇡) on
the (fixed) distribution P

XY

.



as follows:

IC(⇡)
def

= I(⇧ ^X|Y ) + I(⇧ ^ Y |X),

where I(X ^ Y |Z) denotes the conditional mutual informa-
tion between X and Y given Z (cf. [37, 12]). For a pro-
tocol ⇡ with communication complexity k⇡k (the depth of
the binary protocol tree), a simulation protocol requiring
Õ(
p

IC(⇡)k⇡k) bits of communication was given in [4] and

one requiring 2O(IC(⇡)) bits of communication was given in
[7]. A general version of the simulation problem was con-
sidered in [46], but only bounded round simulation proto-
cols were considered. Interestingly, it was shown in [8] that
the amortized distributional communication complexity of
simulating n copies of a protocol ⇡ for vanishing simula-
tion error is bounded above by2 IC(⇡). While a matching
lower bound was also derived in [8], it is not valid in our
context – [8] considered function computation and used a
coordinate-wise error criterion. Nevertheless, we can readily
modify the lower bound argument in [8] and use the conti-
nuity of conditional mutual information to formally obtain
the required lower bound and thereby a characterization of
the amortized distributional communication complexity for
vanishing simulation error. Specifically, denoting by D(⇡n)
the distributional communication complexity of simulating
n copies of a protocol ⇡ with vanishing simulation error, we
have

lim
n!1

1
n
D(⇡n) = IC(⇡).

Perhaps motivated by this characterization, or a folklore ver-
sion of it, the research in this area has focused on designing
simulation protocols for ⇡ requiring communication of length
depending on IC(⇡); the results cited above belong to this
category as well. However, the central role of IC(⇡) in the
distributional communication complexity of protocol simula-
tion is far from settled and many important questions remain
unanswered. For instance, (a) does IC(⇡) su�ce to capture
the dependence of distributional communication complexity
on the simulation error "? (b) Does information complexity
have an operational role in simulating ⇡n besides being the
leading asymptotic term? (c) How about the simulation of
more complicated protocols such as a mixture ⇡

mix

of two
product protocols ⇡n

1

and ⇡n

2

– does IC(⇡
mix

) still constitute
the leading asymptotic term in the communication complex-
ity of simulating ⇡

mix

?
The quantity IC(⇡) plays the same role in the simulation

of protocols as H(X) in the compression of Xn [37] and
H(X|Y ) in the transmission of Xn by the first to the sec-
ond party with access to Y n [38]. The questions raised above
have been addressed for these classical problems (cf. [19]).
In this paper, we answer these questions for simulation of in-
teractive protocols. In particular, we answer all these ques-
tions in the negative by exhibiting another quantity that
plays such a fundamental role and can di↵er from informa-
tion complexity significantly. To this end, we introduce the
notion of information complexity density of a protocol ⇡ with
inputs X and Y generated from a fixed distribution P

XY

.

2Braverman and Rao actually used their general simulation
protocol as a tool for deriving the amortized distributional
communication complexity of function computation. This
result was obtained independently by Ma and Ishwar in [26]
using standard information theoretic techniques.

Definition 1. Information complexity density. The
information complexity density of a private coin protocol ⇡
is given by the function

ic(⌧ ;x, y) = log
P

⇧|XY

(⌧ |x, y)
P

⇧|X (⌧ |x) + log
P

⇧|XY

(⌧ |x, y)
P

⇧|Y (⌧ |y) ,

for all observations x and y of the two parties and all tran-
scripts ⌧ , where P

⇧XY

denotes the joint distribution of the
observation of the two parties and the random transcript ⇧
generated by ⇡.

Note that IC(⇡) = E [ic(⇧;X,Y )]. We show that it is the
"-tail of the information complexity density ic(⇧;X,Y ), i.e.,
the supremum3 over values of � such that Pr (ic(⇧;X,Y ) > �) >
", which governs the communication complexity of simulat-
ing a protocol with simulation error less than " and not the
information complexity of the protocol. The information
complexity IC(⇡) becomes the leading term in communica-
tion complexity for simulating ⇡ only when roughly

IC(⇡) �
p

Var(ic(⇧;X,Y )) log(1/").

This condition holds, for instance, in the amortized regime
considered in [8]. However, the "-tail of ic(⇧;X,Y ) can
di↵er significantly from IC(⇡), the mean of ic(⇧;X,Y ). In
Appendix 4.3, we provide an example protocol with inputs
of size 2n such that for " = 1/n3, the "-tail of ic(⇧;X,Y )
is greater than 2n while IC(⇡) is very small, just Õ(n�2).

1.1 Summary of results
Our main results are bounds for distributional communi-

cation complexity D
"

(⇡) for "-simulating a protocol ⇡. The
key quantity in our bounds is the "-tail �

"

of ic(⇧;X,Y ).
Lower bound. Our main contribution is a general lower

bound for D
"

(⇡). We show that for every private coin pro-
tocol ⇡, D

"

(⇡) & �
"

. In fact, this bound does not rely on
the structure of random variable ⇧ and is valid for the more
general problem of simulating a correlated random variable.

Prior to this work, there was no lower bound that captured
both the dependence on simulation error " as well as the
underlying probability distribution. On the one hand, the
lower bound above yields many sharp results in the amor-
tized regime. It gives the leading asymptotic term in the
communication complexity for simulating any sequence of
protocols, and not just product protocols. For product pro-
tocols, it yields the precise dependence of communication
complexity on " as well as the exact second-order asymptotic
term. On the other hand, it sheds light on the dependence
of D

"

(⇡) on " even in the single-shot regime. For instance,
our lower bound can be used to exhibit an arbitrary separa-
tion between D

"

(⇡) and IC(⇡) when " is not fixed. Specif-
ically, consider the example protocol in Appendix 4.3. On
evaluating our lower bound for this protocol, for " = 1/n3

we get D
"

(⇡) = ⌦(n) which is far more than 2IC(⇡) since
IC(⇡) = Õ(n�2). Remarkably, [18, 17] exhibited exponential
separation between the distributional communication com-
plexity of computing a function and the information com-
plexity of that function even for a fixed ", thereby establish-
ing the optimality of the upper bound D

"

(⇡)  O(2IC(⇡))
given in [7]. Our simple example shows a much stronger
3Formally, our lower bound uses lower "-tail sup{� :
Pr (ic(⇧;X,Y ) > �) > "} and the upper bound uses upper
"-tail inf{� : Pr (ic(⇧;X,Y ) > �) < "}. For many interest-
ing cases, the two coincide.



separation between D
"

(⇡) and IC(⇡), albeit for a vanishing
".

Upper bound. To establish our asymptotic results, we
propose a new simulation protocol, which is of indepen-
dent interest. For a protocol ⇡ with bounded rounds of
interaction, using our proposed protocol we can show that
D

"

(⇡) . �
"

. Much as the protocol of [8], our simulation
protocol simulates one round at a time, and thus, the slack
in our upper bound does depend on the number of rounds.

Note that while the operative term in the lower bound and
the upper bound is the "-tail of ic(⇧;X,Y ), the lower bound
approaches it from below and the upper bound approaches it
from above. It is often the case that these two limits match
and the leading term in our bounds coincide. See Figure 1
for an illustration of our bounds.

Lower bound Upper Bound

Pr(ic(�; X, Y )) > �) < �Pr(ic(�; X, Y )) > �) > �

Distribution of ic(�; X, Y )

Figure 1: Illustration of lower and upper bounds for D
"

(⇡)

Amortized regime: second-order asymptotics. De-
note by ⇡n the n-fold product protocol obtained by applying
⇡ to each coordinate (X

i

, Y
i

) for inputs Xn and Y n. Con-
sider the communication complexity D

"

(⇡n) of "-simulating
⇡n for independent and identically distributed (IID) (Xn, Y n)
generated from Pn

XY

. Using the bounds above, we can ob-
tain the following sharpening of the results of [8]: With V(⇡)
denoting the variance of ic(⇧;X,Y ),

D
"

(⇡n) = nIC(⇡) +
p

nV(⇡)Q�1(") + o(
p
n),

where Q(x) is equal to the probability that a standard nor-
mal random variable exceeds x and Q�1(") ⇡ p

log(1/").
On the other hand, the arguments in4 [8] or [46] give us

D
"

(⇡n) � nIC(⇡)� n"[k⇡k+ log |X ||Y|]� " log(1/").

But the precise communication requirement is not less but
p

nV(⇡) log(1/") more than nIC(⇡).
General formula for amortized communication com-

plexity. The lower and upper bounds above can be used to
derive a formula for the first-order asymptotic term, the co-
e�cient of n, in D

"

(⇡
n

) for any sequence of protocols ⇡
n

with inputs X
n

2 Xn and Y
n

2 Yn generated from any se-
quence of distributions P

XnYn . We illustrate our result by
the following example.

Example 1. Mixed protocol. Consider two protocols ⇡
h

and ⇡
t

with inputs X and Y such that IC(⇡
h

) > IC(⇡
t

). For
n IID observations (Xn, Y n) drawn from P

XY

, we seek to
simulate the mixed protocol ⇡

mix,n

defined as follows: Party
1 first flips a (private) coin with probability p of heads and
sends the outcome ⇧

0

to Party 2. Depending on the outcome
of the coin, the parties execute ⇡

h

or ⇡
t

n times, i.e., they
use ⇡n

h

if ⇧
0

= h and ⇡n

t

if ⇧
0

= t. What is the amortized
communication complexity of simulating the mixed protocol
⇡
mix,n

? Note that

IC(⇡
mix,n

) = n [pIC(⇡
h

) + (1� p)IC(⇡
t

)] .
4The proof in [8] uses the inequality IC(⇡)  k⇡k, a multi-
party extension of which is available in [13, 27].

Is it true that in the manner of [8] the leading asymptotic
term in D

"

(⇡
mix,n

) is IC(⇡
mix,n

)? In fact, it is not so. Our
general formula implies that for all p 2 (0, 1),

D
"

(⇡
mix,n

) = nIC(⇡
h

) + o(n)

This is particularly interesting when p is very small and
IC(⇡

h

) � IC(⇡
t

).

1.2 Proof techniques
Proof for the lower bound. We present a new method

for deriving lower bounds on distributional communication
complexity. Our proof relies on a reduction argument that
utilizes an "-simulation to generate an information theoret-
ically secure secret key for X and Y (for a definition of the
latter, see [28, 1]). Heuristically, a protocol can be simulated
using fewer bits of communication than its length because of
the correlation in the observationsX and Y . Due to this cor-
relation, when simulating the protocol, the parties agree on
more bits (generate more common randomness) than what
they communicate. These extra bits can be extracted as
an information theoretically secure secret key for the two
parties using the leftover hash lemma (cf. [6, 36]). A lower
bound on the number of bits communicated can be derived
using an upper bound for the maximum possible length of a
secret key that can be generated using interactive commu-
nication; the latter was derived recently in [42, 41].

Protocol for the upper bound. We simulate a given
protocol one round at a time. Simulation of each round con-
sists of two subroutines: Interactive Slepian-Wolf compres-
sion and message reduction by public randomness. The first
subroutine is an interactive version of the classical Slepian-
Wolf compression [38] for sending X to an observer of Y
which is of optimal instantaneous rate. The second subrou-
tine uses an idea that appeared first in [35] (see, also, [30,
45]) and reduces the number of bits communicated in the
first by realizing a portion of the required communication
by the shared public randomness. This is possible since we
are not required to recover a given random variable ⇧, but
only simulate it to within a fixed statistical distance.

The proposed protocol is closely related to that proposed
in [8]. However, there are some crucial di↵erences. The
protocol in [8], too, uses public randomness to sample each
round of the protocol, before transmitting it using an inter-
active communication of size incremented in steps. However,
our information theoretic approach provides a systematic
method for choosing this step size. Furthermore, our pro-
tocol for sampling the protocol from public randomness is
significantly di↵erent from that in [8] and relies on random-
ness extraction techniques. In particular, the protocol in [8]
does not attain the asymptotically optimal bounds achieved
by our protocol.

Technical approach. While we utilize new, bespoke
techniques for deriving our lower and upper bounds, casting
our problem in an information theoretic framework allows
us to build upon the developments in this classic field. In
particular, we rely on the information spectrum approach of
Han and Verdú, introduced in the seminal paper [20] (see
the textbook [19] for a detailed account). In this approach,
the classical measures of information such as entropy and
mutual information are viewed as expectations of the cor-
responding information densities, and the notion of “typical
sets” is replaced by sets where these information densities
are bounded uniformly. The set of values taken by an in-



formation density (such as h(x) = � log P
X

(x)) is called
its spectrum. Coding theorems of classical information the-
ory consider IID repetitions and rely on the so-called the
asymptotic equipartition property [11] which essentially cor-
responds to the concentration of spectrums on small inter-
vals. For single-shot problems such concentrations are not
available and we have to work with the whole span of the
spectrum.

Our main technical contribution in this paper is the ex-
tension of the information spectrum method to handle in-
teractive communication. Our results rely on the analysis of
appropriately chosen information densities and, in particu-
lar, will rely on the spectrum of the information complexity
density ic(⇧;X,Y ). As is usually the case, di↵erent com-
ponents of our analysis require bounds on these informa-
tion densities in di↵erent directions, which in turn renders
our bounds loose and incurs a gap equal to the length of
the corresponding information spectrum. To overcome this
shortcoming, we use the spectrum slicing technique of Han
[19]5 to divide the information spectrum into small portions
with information densities closely bounded from both sides.
While in our upper bounds spectrum slicing is used to care-
fully choose the parameters of the protocol, it is required in
our lower bounds to identify a set of inputs where a given
simulation will require a large number of bits to be commu-
nicated.

1.3 Organization
A formal statement of the problem, along with the neces-

sary preliminaries, is given in the next section. Section ??

contains all our results. While the proofs of our general
single-shot results are deferred to the full-version of the pa-
per, proofs of the asymtotic results, derived using our single-
shot results, are included in Section 4.

1.4 Notations
Random variables are denoted by capital letters such as

X, Y , etc. realizations by small letters such as x, y, etc.
and their range sets by corresponding calligraphic letters
such as X , Y, etc.. Protocols are denoted by appropriate
subscripts or superscripts with ⇡, the corresponding random
transcripts by the same sub- or superscripts with ⇧; ⌧ is used
as a placeholder for realizations of random transcripts. All
the logarithms in this paper are to the base 2.
The following convention, described for the entropy den-

sity, shall be used for all information densities used in this
paper. We shall abbreviate the entropy density h

PX (x) =
� log P

X

(x) by h(x), when there is no confusion about P
X

,
and the random variable h(X) corresponds to drawing X
from the distribution P

X

.
Whenever there is no confusion, we will not display the

dependence of distributional communication complexity on
the underlying distribution. In most of our discussion, the
latter remains fixed.

2. PROBLEM STATEMENT
Two parties observe correlated random variables X and

Y , with Party 1 observing X and Party 2 observing Y , gen-
erated from a fixed distribution P

XY

and taking values in

5The spectrum slicing technique was introduced in [19] to
derive the error exponents of various problems for general
sources and a rate-distortion function for general sources.

finite sets X and Y, respectively. An interactive protocol ⇡
(for these two parties) consists of shared public randomness
U , private randomness6 UX and UY , and interactive commu-
nication ⇧

1

, ...,⇧
r

. The parties communicate alternatively
with Party 1 transmitting in the odd rounds and Party 2 in
the even rounds. Specifically, ⇧

i

is a string of bits deter-
mined by the previous transmissions ⇧

1

, ...,⇧
i�1

together
with (X,UX , U) for odd i and (Y, UY , U) for even i. For
simplicity, we assume that the realizations of ⇧

i

constitute
a prefix-free code, i.e., no realizations of ⇧

i

is a prefix of
another realization of ⇧

i

. The number of rounds of com-
munication r is a random stopping-time such that the event
{r = t} is determined by the transcript ⇧

1

, ...,⇧
t

; we denote
the overall transcript of the protocol7 by ⇧. The length of
a protocol ⇡, k⇡k, is the maximum number of bits that are
communicated in any execution of the protocol.

A random variable F is said to be recoverable by ⇡ for
Party 1 (or Party 2) if F is function of (X,U,UX ,⇧) (or
(Y, U, UY ,⇧)).

A protocol with a constant U is called a private coin pro-
tocol, with a constant (UX , UY) is called a public coin proto-
col, and with (U,UX , UY) constant is called a deterministic
protocol.

When we execute the protocol ⇡ above, the overall view
of the parties consists of random variables (XY⇧⇧), where
the two ⇧s correspond to the transcript of the protocol seen
by the two parties. A simulation of the protocol consists of
another protocol which generates almost the same view as
that of the original protocol. We are interested in the sim-
ulation of private coin protocols, using arbitrary8 protocols;
public coin protocols can be simulated by simulating for each
fixed value of public randomness the resulting private coin
protocol.

Definition 2. "-Simulation of a protocol. Let ⇡ be a
private coin protocol. Given 0  " < 1, a protocol ⇡

sim

constitutes an "-simulation of ⇡ if there exist ⇧X and ⇧Y ,
respectively, recoverable by ⇡

sim

for Party 1 and Party 2 such
that

d
var

�

P
⇧⇧XY

,P
⇧X⇧YXY

�  ", (1)

where d
var

(P,Q) = 1

2

P

x

|P
x

� Q
x

| denotes the variational
or the statistical distance between P and Q.

Definition 3. Distributional communication complex-

ity. The "-error distributional communication complexity
D

"

(⇡|P
XY

) of simulating a private coin protocol ⇡ is the
minimum length of an "-simulation of ⇡. The distribution
P

XY

remains fixed throughout our analysis; for brevity, we
shall abbreviate D

"

(⇡|P
XY

) by D
"

(⇡).

Problem. Given a protocol ⇡ and a joint distribution P
XY

for the observations of the two parties, we seek to charac-
terize D

"

(⇡).
6The random variables U,UX , UY are mutually independent
and independent jointly of (X,Y ).
7We allow ⇧

i

to be constant and allow it to depend only on
the local observation (and not on the previous communica-
tion ⇧

1

, ...,⇧
i�1

). This description of an interactive protocol
is very general and is equivalent to the usual protocol-tree
based description (cf. [4, 8]).
8Since we are not interested in minimizing the amount of
randomness used in a simulation, and private randomness
can always be sampled from public randomness, we can re-
strict ourselves to public protocols for simulating.



Remark 1. Deterministic protocols Note that a deter-
ministic protocol corresponds to an interactive function, and
for such protocols,

d
var

�

P
⇧⇧XY

,P
⇧X⇧YXY

�

= 1� Pr (⇧ = ⇧X = ⇧Y) .

Therefore, a protocol is an "-simulation of a deterministic
protocol if and only if it computes the corresponding inter-
active function with probability of error less than ". Fur-
thermore, randomization does not help in this case, and it
su�ces to use deterministic simulation protocols. Thus, our
results below provide tight bounds for distributional com-
munication complexity of interactive functions and, in fact,
of all functions which are information theoretically securely
computable for the distribution P

XY

, since computing these
functions is tantamount to computing an interactive func-
tion [31] (see, also, [5, 25]).

Remark 2. Compression of protocols A protocol ⇡
com

constitutes an "-compression of a given protocol ⇡ if it re-
covers ⇧X and ⇧Y for Party 1 and Party 2 such that

Pr (⇧ = ⇧X = ⇧Y) � 1� ".

Note that randomization does not help in this case either.
In fact, for deterministic protocols simulation and compres-
sion coincide. In general, however, compression is a more
demanding task than simulation and our results show that
in many cases, (such as the amortized regime), compres-
sion requires strictly more communication than simulation.
Specifically, our results for "-simulation in this paper can be
modified to get corresponding results for "-compression by
replacing the information complexity density ic(⌧ ;x, y) by

h(⌧ |x) + h(⌧ |y) = � log P
⇧|X (⌧ |x) P

⇧|Y (⌧ |y) .
The proofs remain essentially the same and, in fact, simplify
significantly.

3. MAIN RESULTS
We derive a lower bound for D

"

(⇡) which applies to all
private coin protocols ⇡ and, in fact, applies to the more
general problem of communication complexity of sampling
a correlated random variable. For protocols with bounded
number of rounds of interaction, i.e., protocols with r =
r(X,Y, U, UX , UY)  r

max

with probability 1, we present a
simulation protocol which yields upper bounds for D

"

(⇡)
of similar form as our lower bounds. In particular, in the
asymptotic regime our bounds improve over previously known
bounds and are tight.

3.1 Lower bound
We prove the following lower bound.

Theorem 1. Given 0  " < 1 and a protocol ⇡, for arbi-
trary 0 < ⌘ < 1/3

D
"

(⇡) � sup{� : Pr (ic(⇧;X,Y ) > �) � "+ "0}� �0, (2)

where the fudge parameters "0 and �0 depend on ⌘ as well
as appropriately chosen information spectrums and will be
described below in (4) and (5).

The appearance of fudge parameters such as "0 and �0 in
the bound above is not surprising since the techniques to
bound the tail probability of random variables invariably
entail such parameters, which are tuned based on the specific

scenario being studied. For instance, the Cherno↵ bound
has a parameter that is tuned with respect to the moment
generating function of the random variable of interest. More
relevant to the problem studied here, such fudge parameters
also show up in the evalutation of error probability of single-
party non-interactive compression problems (cf. [20, 19]).

When the fudge parameters "0 and �0 are negligible, the
right-side of the bound above is close to "-tail of ic(⇧;X,Y ).
Indeed, the fudge parameters turn out to be negligible in
many cases of interest. For instance, for the amortized case
"0 can be chosen to be arbitrarily small. The parameter �0 is
related to the length of the interval in which the underlying
information densities lie with probability greater than 1�"0,
the essential length of spectrums. For the amortized case
with product protocols, by the central limit theorem the
related essential spectrums are of length ⇤ = O(

p
n) and

�0 = log⇤. On the other hand, �
"

is O(n). Thus, the
log n order fudge parameter �0 is negligible in this case. The
same is true also for the example protocol in Appendix 4.3.
Finally, it should be noted that similar fudge parameters
are ubiquitous in single-shot bounds; for instance, see [19,
Lemma 1.3.2].

Remark 3. The result above does not rely on the interac-
tive nature of ⇧ and is valid for simulation of any random
variable ⇧. Specifically, for any joint distribution P

⇧XY

,
an "-simulation satisfying (1) must communicate at least as
many bits as the right-side of (2), which is roughly equal to
the largest value �

"

of � such that Pr (ic(⇧;X,Y ) > �) > ".

The fudge parameters. The fudge parameters "0 and
�0 in Theorem 1 depend on the spectrums of the following
information densities:

(i) Information complexity density: This density is de-
scribed in Definition 1 and will play a pivotal role in
our results.

(ii) Entropy density of (X,Y ): This density, given by h(X,Y ) =
� log P

XY

(X,Y ), captures the randomness in the data
and plays a fundamental role in the compression of the
collective data of the two parties (cf. [19]).

(iii) Conditional entropy density of X given Y⇧: The con-
ditional entropy density h(X|Y ) = � log P

X|Y (X|Y )
plays a fundamental role in the compression of X for
an observer of Y [29, 19]. We shall use the conditional
entropy density h(X|Y⇧) in our bounds.

(iv) Sum conditional entropy density of (X⇧, Y⇧): The
sum conditional entropy density is given by h (X4Y ) =
� log P

X|Y (X|Y ) P
Y |X (Y |X) has been shown recently

to play a fundamental role in the communication com-
plexity of the data exchange problem [40]. We shall
use the sum conditional entropy density h (X⇧4Y⇧).

(v) Information density ofX and Y is given by i(X^Y )
def

=
h(X)� h(X|Y ).

Let [�(1)

min

,�(1)

max

], [�(2)

min

,�(2)

max

], and [�(3)

min

,�(3)

max

] denote the
“essential” spectrums of information densities ⇣

1

= h(X,Y ),
⇣
2

= h(X|Y⇧), and ⇣
3

= h (X⇧4Y⇧), respectively. Con-

cretely, let the tail events E
i

= {⇣
i

/2 [�(i)

min

,�(i)

max

]}, i =
1, 2, 3, satisfy

Pr (E
1

) + Pr (E
2

) + Pr (E
3

)  "
tail

, (3)



where "
tail

can be chosen to be appropriately small. Further,
let ⇤

i

= �(i)

max

� �(i)

min

, i = 1, 2, 3, denote the corresponding
e↵ective spectrum lengths. The parameters "0 and �0 in
Theorem 1 are given by

"0 = "
tail

+ 2⌘ (4)

and

�0 = 2 log⇤
1

⇤
3

+ log⇤
2

� log(1� 3⌘) + 9 log 1/⌘ + 3, (5)

where 0 < ⌘ < 1/3 is arbitrary. If ⇤
i

= 0, i = 1, 2, 3, we can
replace it with 1 in the bound above. Thus, our spectrum
slicing approach allows us to reduce the dependence of �0 on
spectrum lengths ⇤

i

’s from linear to logarithmic.

3.2 Upper bound
We prove the following upper bound.

Theorem 2. For every 0  " < 1 and every protocol ⇡,

D
"

(⇡)  inf
�

� : Pr (ic(⇧;X,Y ) > �)  "� "0
 

+ �0,

where the fudge parameters "0 and �0 depend on the maxi-
mum number of rounds of interaction in ⇡ and on appropri-
ately chosen information spectrums.

Remark 4. In contrast to the lower bound given in the
previous section, the upper bound above relies on the in-
teractive nature of ⇡. Furthermore, the fudge parameters
"0 and �0 depend on the number of rounds, and the upper
bound may not be useful when the number of rounds is not
negligible compared to "-tail of the information complexity
density. However, we will see that the above upper bound is
tight for the amortized regime, even up to the second-order
asymptotic term.

The simulation protocol. Our simulation protocol sim-
ulates the given protocol ⇡ round-by-round, starting from⇧

1

to ⇧
r

. Simulation of each round consists of two subroutines:
Interactive Slepian-Wolf compression and message reduction
by public randomness.

The first subroutine uses an interactive version of the clas-
sical Slepian-Wolf compression [38] (see [29] for a single-shot
version) for sending X to an observer of Y . The standard
(noninteractive) Slepian-Wolf coding entails hashing X to
l values and sending the hash values to the observer of Y .
The number of hash values l is chosen to take into account
the worst-case performance of the protocol. However, we are
not interested in the worst-case performance of each round,
but of the overall multiround protocol. As such, we seek to
compress X using the least possible instantaneous rate. To
that end, we increase the number of hash values gradually,
� at a time, until the receiver decodes X and sends back an
ACK. We apply this subroutine to each round i, say i odd,
with ⇧

i

in the role of X and (Y,⇧
1

....,⇧
i�1

) in the role of Y .
Similar interactive Slepian-Wolf compression schemes have
been considered earlier in di↵erent contexts (cf. [15, 32, 43,
22, 40]).
The second subroutine reduces the number of bits com-

municated in the first by realizing a portion of the required
communication by the shared public randomness U . Specif-
ically, instead of transmitting hash values of ⇧

i

, we transmit
hash values of a random variable ⇧̂

i

generated in such a man-
ner that some of its corresponding hash bits can be extracted
from U and the overall joint distributions do not change by
much. Since U is independent of (X,Y ), the number k of

hash bits that can be realized using public randomness is
the maximum number of random hash bits of ⇧

i

that can
be made almost independent of (X,Y ), a good bound for
which is given by the leftover hash lemma. The overall sim-
ulation protocol for ⇧

i

now communicates l� k instead of l
bits. A similar technique for message reduction appears in
a di↵erent context in [35, 30, 45].

The overall performance of the protocol above is still sub-
optimal because the saving of k bits is limited by the worst-
case performance. To remedy this shortcoming, we once
again take recourse to spectrum slicing to ensure that our
saving k is close to the best possible for each realization
(⇧, X, Y ).

Note that our protocol above is closely related to that pro-
posed in [8]. However, the information theoretic form here
makes it amenable to techniques such as spectrum slicing,
which leads to tighter bounds than those established in [8].

The fudge parameters. The fudge parameters "0 and
�0 in Theorem 2 depend on the spectrum of various condi-
tional information densities. Our simulation protocol sim-
ulates ⇡ one round at a time. Simulation of each round
consists of two subroutines: Interactive Slepian-Wolf com-
pression and message reduction by public randomness. To
optimize the performance of each subroutine, we slice the
spectrum of the respective conditional information density
involved. Specifically, for odd round t, we slice the spec-
trum of h(⇧

t

|Y⇧t�1) = � log P
⇧t|Y ⇧

t�1

�

⇧
t

|Y,⇧t�1

�

for

interactive Slepian-Wolf compression and h(⇧
t

|X⇧t�1) =
� log P

⇧t|X⇧

t�1

�

⇧
t

|X,⇧t�1

�

for the substitution of mes-
sage by public randomness; for even rounds, the role of X
and Y is interchanged. Each round involves some residuals
related to the two conditional information densities. Then,
the fudge parameters "0 and �0 are accumulations of the
residuals of each round.

Specifically, for a protocol ⇡ with communication com-
plexity d, for each t, 1  t  d, we slice the essential spec-

trums
⇣

�min

P

⇧t|X⇧t�1
,�max

P

⇧t|X⇧t�1

i

and
⇣

�min

P

⇧t|Y ⇧t�1
,�max

P

⇧t|Y ⇧t�1

i

of h(⇧
t

|X⇧t�1) and h(⇧
t

|Y⇧t�1), respectively, intoN
P

⇧t|X⇧t�1

andN
P

⇧t|Y ⇧t�1 slices of lengths�
P

⇧t|X⇧t�1 and�
P

⇧t|Y ⇧t�1 .

Let

"
t

def

= Pr
⇣

h(⇧
t

|X⇧t�1) /2
⇣

�min

P

⇧t|X⇧t�1
,�max

P

⇧t|X⇧t�1

i⌘

+ Pr
⇣

h(⇧
t

|Y⇧t�1) /2
⇣

�min

P

⇧t|Y ⇧t�1
,�max

P

⇧t|Y ⇧t�1

i⌘

,

and

�
t

=

8

>

>

>

<

>

>

>

:

N
P

⇧t|Y ⇧t�1 + 3 logN
P

⇧t|X⇧t�1 +�
P

⇧t|Y ⇧t�1

+�
P

⇧t|X⇧t�1 + 3�, odd t,

N
P

⇧t|X⇧t�1 + 3 logN
P

⇧t|Y ⇧t�1 +�
P

⇧t|X⇧t�1

+�
P

⇧t|Y ⇧t�1 + 3�, even t.

(6)

Then the fudge parameters "0 and �0 are given by

"0 =
d

X

t=1



4"
t

+ 3
⇣

N
P

⇧t|Y ⇧t�1 +N
P

⇧t|X⇧t�1 + 2
⌘

2��

+
3

N
P

⇧t|X⇧t�1

+
3

N
P

⇧t|Y ⇧t�1

�

,

�0 =
d

X

t=1

�
t

,



where �
t

is given by (6). Note that here

�
P

⇧t|X⇧t�1NP

⇧t|X⇧t�1 = �max

P

⇧t|X⇧t�1
� �min

P

⇧t|X⇧t�1
,

and

�
P

⇧t|Y ⇧t�1NP

⇧t|Y ⇧t�1 = �max

P

⇧t|Y ⇧t�1
� �min

P

⇧t|Y ⇧t�1
.

Thus, the optimal choice of fudge parameters "0 and �0 is
roughly the sum of square roots of the lengths of essential
spectrums of h(⇧

t

|X⇧t�1) and h(⇧
t

|Y⇧t�1), summed over
t = 1, ..., d.

3.3 Amortized regime: second-order asymp-
totics

It was shown in [8] that information complexity of a proto-
col equals the amortized communication rate for simulating
the protocol, i.e.,

lim
"!0

lim
n!1

1
n
D

"

(⇡n|Pn

XY

) = IC(⇡),

where Pn

XY

denotes the n-fold product of the distribution
P

XY

, namely the distribution of random variables (X
i

, Y
i

)n
i=1

drawn IID from P
XY

, and ⇡n corresponds to running the
same protocol ⇡ on every coordinate (X

i

, Y
i

). Thus, IC(⇡)
is the first-order term (coe�cient of n) in the communication
complexity of simulating the n-fold product of the protocol.
However, the analysis in [8] sheds no light on finer asymp-
totics such as the second-order term or the dependence of
D

"

(⇡n|Pn

XY

) on9 ". On the one hand, it even remains un-
clear from [8] if a positive " reduces the amortized commu-
nication rate or not. On the other hand, the amortized com-
munication rate yields only a loose bound for D

"

(⇡n|Pn

XY

)
for a finite, fixed n. A better estimate of D

"

(⇡n|Pn

XY

) at a
finite n and for a fixed " can be obtained by identifying the
second-order asymptotic term. Such second-order asymp-
totics were first considered in [39] and have received a lot
of attention in information theory in recent years following
[21, 33].

Our lower bound in Theorem 1 and upper bound in Theo-
rem 2 show that the leading term in D

"

(⇡n|Pn

XY

) is roughly
the "-tail �

"

of the random variable

ic(⇧n;Xn, Y n) =
n

X

i=1

ic(⇧
i

;X
i

, Y
i

),

a sum of n IID random variables. By the central limit the-
orem the first-order asymptotic term in �

"

equals

nE [ic(⇧;X,Y )] = nIC(⇡),

recovering the result of [8]. Furthermore, the second-order
asymptotic term depends on the variance V(⇡) of ic(⇧;X,Y ),
i.e., on

V(⇡)
def

= Var [ic(⇧;X,Y )] .

We have the following result.

Theorem 3. For every 0 < " < 1 and every protocol ⇡
with V(⇡) > 0,

D
"

(⇡n|Pn

XY

) = nIC(⇡) +
p

nV(⇡)Q�1(") + o(
p
n),

9The lower bound in [8] gives only the weak converse which
holds only when " = "

n

! 0 as n ! 1.

where Q(x) is equal to the probability that a standard normal
random variable exceeds x.

As a corollary, we obtain the so-called strong converse.

Corollary 4. For every 0 < " < 1, the amortized com-
munication rate

lim
n!1

1
n
D

"

(⇡n|Pn

XY

) = IC(⇡).

Corollary 4 implies that the amortized communication
complexity of simulating protocol ⇡ cannot be smaller than
its information complexity even if we allow a positive er-
ror. Thus, if the length of the simulation protocol ⇡

sim

is
“much smaller” than nIC(⇡), the corresponding simulation
error " = "

n

must approach 1. But how fast does this "
n

converge to 1? Our next result shows that this convergence
is exponentially rapid in n.

Theorem 5. Given a protocol ⇡ and an arbitrary � > 0,
for any simulation protocol ⇡

sim

with

k⇡
sim

k  n[IC(⇡)� �],

there exists a constant E = E(�) > 0 such that for every n
su�ciently large, it holds that

d
var

⇣

P
⇧

n
⇧

n
X

n
Y

n ,P
⇧

n
X⇧

n
YX

n
Y

n

⌘

� 1� 2�En.

A similar converse was first shown for the channel coding
problem in information theory by Arimoto [3] (see [14, 34]
for further refinements of this result), and has been studied
for other classical information theory problems as well. To
the best of our knowledge, Corollary 5 is the first instance
of an Arimoto converse for a problem involving interactive
communication.

In the TCS literature, such converse results have been
termed direct product theorems and have been considered in
the context of the (distributional) communication complex-
ity problem (for computing a given function) [9, 10, 23]. Our
lower bound in Theorem 1, too, yields a direct product the-
orem for the communication complexity problem. We state
this simple result in the passing, skipping the details since
they closely mimic Theorem 5. Specifically, given a function
f on X ⇥Y, by slight abuse of notations and terminologies,
let D

"

(f) = D
"

(f |P
XY

) be the communication complexity
of computing f . As noted in Remark 3, Theorem 1 is valid
for an arbitrary random variables ⇧, and not just an inter-
active protocol. Then, by following the proof of Theorem 5
with F = f(X,Y ) replacing ⇧ in the application of Theo-
rem 1, we get the following direct product theorem.

Theorem 6. Given a function f and an arbitrary � > 0,
for any function computation protocol ⇡ computing estimates
FX ,n

and FY,n

of fn at the Party 1 and Party 2, respectively,
and with length

k⇡k  n[H(F |X) +H(F |Y )� �], (7)

there exists a constant E = E(�) > 0 such that for every n
su�ciently large, it holds that

Pr (FX ,n

= FY,n

= Fn)  2�En,

where Fn = (F
1

, ..., F
n

) and F
i

= f(X
i

, Y
i

), 1  i  n.

Recall that [8, 26] showed that the first order asymptotic
term in the amortized communication complexity for func-
tion computation was shown to equal the information com-
plexity IC(f) of the function, namely the infimum over IC(⇡)



for all interactive protocols ⇡ that recover f with 0 error.
Ideally, we would like to show an Arimoto converse for this
problem, i.e., replace the threshold on the right-side of (7)
with n[IC(f)��]. The direct product result above is weaker
than such an Arimoto converse, and proving the Arimoto
converse for the function computation problem is work in
progress. Nevertheless, the simple result above is not com-
parable with the known direct product theorems in [9, 10]
and can be stronger in some regimes10.

3.4 General formula for amortized communi-
cation complexity

Consider arbitrary distributions P
XnYn on Xn ⇥ Yn and

arbitrary protocols ⇡
n

with inputs X
n

and Y
n

taking values
in Xn and Yn, for each n 2 . For vanishing simulation
error "

n

, how does D
"n(⇡n

|P
XnYn) evolve as a function of

n?
The previous section, and much of the theoretical com-

puter science literature, has focused on the case when P
XnYn =

Pn

XY

and the same protocol ⇡ is executed on each coordi-
nate. In this section, we identify the first-order asymptotic
term in D

"n(⇡n

|P
XnYn) for a general sequence of distri-

butions11 {P
XnYn}1n=1

and a general sequence of protocols
⇡ = {⇡

n

}1
n=1

. Formally, the amortized (distributional) com-
munication complexity of ⇡ for {P

XnYn}1n=1

is given by12

D(⇡)
def

= lim
"!0

lim sup
n!1

1
n
D

"

(⇡
n

|P
XnYn).

Our goal is to characterize D(⇡) for any given sequences
P

n

and ⇡. We seek a general formula for D(⇡) under min-
imal assumptions. Since we do not make any assumptions
on the underlying distribution, we cannot use any measure
concentration results. Instead, we take recourse to proba-
bility limits of information spectrums introduced by Han
and Verdú in [20] for handling this situation (cf. [19]).
Specifically, for a sequence of protocols ⇡ = {⇡

n

}1
n=1

and
a sequence of observations (X,Y) = {(X

n

, Y
n

)}1
n=1

, the sup
information complexity is defined as

IC(⇡)
def

= inf

⇢

↵ | lim
n!1

Pr

✓

1
n
ic(⇧

n

;X
n

, Y
n

) > ↵

◆

= 0

�

,

where, with a slight abuse of notation, ⇧
n

is the transcript
of protocol ⇡

n

for observations (X
n

, Y
n

). The result below
shows that it is nIC(⇡), and not IC(⇡

n

), that determines the
communication complexity in general.

Theorem 7. For every sequence of protocols ⇡ = {⇡
n

}1
n=1

,

D(⇡) = IC(⇡).

The proof uses Theorem 1 and Theorem 2 with carefully
chosen spectrum-slice sizes.

For the case when ⇡
n

= ⇡n and P
XnYn = Pn

XY

, it follows
from the law of large numbers that IC(⇡) = IC(⇡) and we
recover the result of [8]. However, the utility of the general
formula goes far beyond this simple amortized regime. Ex-
ample 1 provides one such instance. In this case, IC(⇡) can
be easily shown to equal IC(⇡

h

) for any bias of the coin ⇧
0

.

10The result in [9, 10] shows a direct product theorem when
we communicate less than nIC(f)/poly(log n).

11We do not require P
XnYn to be even consistent.

12Although D(⇡) also depends on {P
XnYn}1n=1

, we omit the
dependency in our notation.

4. ASYMPTOTIC OPTIMALITY
We now present the proofs of Theorem 3, Theorem 7 and

Therem 5 using single-shot bounds given in Theorem 1 and
Theorem 2. Both the proofs rely on carefully choosing the
slice-sizes in the lower and upper bounds.

4.1 Proof of Theorem 3
We start with the upper bound. Note that, for IID ran-

dom variables (⇧n, Xn, Y n), the spectrums of h(⇧n

t

|Zn, (⇧t�1)n)
for 13 Z = X or Y have width O(

p
n). Therefore, the pa-

rameters �s and Ns that appear in the fudge parameters
can be chosen as O(n1/4). Specifically, by standard measure
concentration bounds (for bounded random variables), for
every ⌫ > 0, there exists a constant14 c > 0 such that with

�min

P

⇧n
t |Zn(⇧t�1)n

= nH(⇧
t

|Z,⇧t�1)� c
p
n,

�max

P

⇧n
t |Zn(⇧t�1)n

= nH(⇧
t

|Z,⇧t�1) + c
p
n,

the following bound holds:

Pr

✓

(⇧n

t

, (Zn, (⇧t�1)n)) 2 T (0)

P

⇧n
t |Zn(⇧t�1)n

◆

 ⌫. (8)

Let T denote the third central moment of the random vari-
able ic(⇧;X,Y ). For

�
n

= nIC(⇡) +
p

nV(⇡)Q�1

✓

"� 9d⌫ � T 3

2V(⇡)3/2
p
n

◆

,

choosing�
P

⇧n
t |Zn(⇧t�1)n

= N
P

⇧n
t |Zn(⇧t�1)n

= � =
p
2cn1/4,

and l
max

= �
n

+
P

d

t=1

�
t

in Theorem 2, we get a protocol of
length l

max

and satisfying

d
var

⇣

P
⇧

n
X⇧

n
YX

n
Y

n ,P
⇧

n
⇧

n
X

n
Y

n

⌘

 Pr

 

n

X

i=1

ic(⇧
i

;X
i

, Y
i

) > �
n

!

+ 9d⌫

for su�ciently large n. By its definition given in (6), �
t

=
O(n1/4) for the choice of parameters above. Thus, the Berry-
Esséen theorem (cf. [16]) and the observation above gives
a protocol of length l

max

attaining "-simulation. Therefore,
using the Taylor approximation of Q(·) yields the achiev-
ability of the claimed protocol length.

For the lower bound, we fix su�ciently small constant
� > 0, and we set

�(1)

min

= n(H(X,Y )� �), �(1)

max

= n(H(X,Y ) + �),

�(2)

min

= n(H(X|Y,⇧)� �), �(2)

max

= n(H(X|Y,⇧) + �),

�(3)

min

= n(H(X⇧4Y⇧)� �), �(3)

max

= n(H(X⇧4Y⇧) + �).

Then, by standard measure concentration bounds imply that
the tail probability "

tail

in (3) is bounded above by c

n

for
some constant c > 0. We also set ⌘ = 1

n

. For these choices
of parameters, we note that the fudge parameter is �0 =
O(log n). Thus, by setting

� = �
n

13We introduce Z as a placeholder for X or Y for brevity.
14Although the constant depends on random variables ap-
pearing in each round, since the number of rounds is
bounded, we take the maximum constant so that (8) holds
for every t.



= nIC(⇡) +
p

nV(⇡)Q�1

✓

"+
c+ 2
n

+
T 3

2V(⇡)3/2
p
n

◆

= nIC(⇡) +
p

nV(⇡)Q�1(") +O(log n),

where the final equality is by the Tailor approximation, an
application of the Berry-Esséen theorem to the bound in (2)
gives the desired lower bound on the protocol length.

4.2 Proof of Theorem 5
Theorem 1 implies that if a protocol ⇡

sim

is such that

log k⇡
sim

k < �� �0, (9)

then its simulation error must be larger than

Pr (ic (⇧n;Xn, Y n) > �)� "0. (10)

To compute fudge parameters, we set

�(1)

min

= n(H(X,Y )� �), �(1)

max

= n(H(X,Y ) + �),

�(2)

min

= n(H(X|Y,⇧)� �), �(2)

max

= n(H(X|Y,⇧) + �),

�(3)

min

= n(H(X⇧4Y⇧)� �), �(3)

max

= n(H(X⇧4Y⇧) + �).

By the Cherno↵ bound, there exists E
1

> 0 such that

"
tail

 2�E1n.

Furthermore, ⇤
i

= O(n) for i = 1, 2, 3. We set ⌘ = 2�
�
27n.

It follows that

"0  2�E1n + 2�
�
27n (11)

and

�0  �
3
n+O(log n). (12)

Finally, upon setting

� = nIC(⇡)� �
3

(13)

and applying the Cherno↵ bound once more, we obtain a
constant E

2

> 0 such that

Pr (ic (⇧n;Xn, Y n) > �) � 1� 2�E2n. (14)

The result follows upon combining (9)-(14).

4.3 Proof of Theorem 7
For a sequence of protocols ⇡ = {⇡

n

}1
n=1

and a sequence
of observations (X,Y) = {(X

n

, Y
n

)}1
n=1

, let

H(⇧
t

|Z,⇧t�1) (15)

= sup
n

↵ : lim
n!1

Pr
�

h(⇧
n,t

|Z
n

⇧t�1

n

) < ↵
�

= 0
o

, (16)

H(⇧
t

|Z,⇧t�1) (17)

= inf
n

↵ : lim
n!1

Pr
�

h(⇧
n,t

|Z
n

⇧t�1

n

) > ↵
�

= 0
o

, (18)

where Z = X or Y, ⇧
t

= {⇧
n,t

}1
n=1

and⇧

t�1

n

= {⇧t�1

n

}1
n=1

are sequences of transcripts of tth round and up to tth
rounds, respectively. For achievability part, we fix arbitrary
small � > 0, and set

�min

P

⇧n,t|Zn⇧t�1
n

= n
�

H(⇧
t

|Z,⇧t�1)� �
�

,

�max

P

⇧n,t|Zn⇧t�1
n

= n
�

H(⇧
t

|Z,⇧t�1) + �
�

,

�
P

⇧n,t|Zn⇧t�1
n

= N
P

⇧n,t|Zn⇧t�1
n

= � =
p
2�n. We set

l
max

= n
�

IC(⇡) + �
�

+
d

X

t=1

�
t

= n
�

IC(⇡) + �
�

+O(
p
n),

where �
t

is given by (6). Then, by Theorem 2, by the defi-
nition of IC(⇡) and by (16) and (18), there exists a simula-
tion protocol of length l

max

with vanishing simulation error.
Since � > 0 is arbitrary, we have the desired achievability
bound.

For converse part, we fix arbitrary � > 0, and set

�(1)

min

= n(H(X,Y)� �),

�(1)

max

= n(H(X,Y) + �),

�(2)

min

= n(H(X|Y,⇧)� �),

�(2)

max

= n(H(X|Y,⇧) + �),

�(3)

min

= n(H(X⇧4Y⇧)� �),

�(3)

max

= n(H(X⇧4Y⇧) + �),

where

H(X,Y) = sup
n

↵ : lim
n!1

Pr (h(X
n

Y
n

) < ↵) = 0
o

,

H(X,Y) = inf
n

↵ : lim
n!1

Pr (h(X
n

Y
n

) > ↵) = 0
o

,

H(X|Y,⇧) = sup {↵ : Pr (h(X
n

|Y
n

⇧
n

) < ↵) = 0} ,
H(X|Y,⇧) = inf {↵ : Pr (h(X

n

|Y
n

⇧
n

) > ↵) = 0} ,
H(X⇧4Y⇧) = sup {↵ : Pr (�h(X

n

⇧
n

4Y
n

⇧
n

) < ↵) = 0} ,
H(X⇧4Y⇧) = inf {↵ : Pr (�h(X

n

⇧
n

4Y
n

⇧
n

) > ↵) = 0} .
Then, by the definitions, we find that the tail probability
"
tail

in (3) converges to 0. We also set ⌘ = (1/n). For these
choices of parameters, we note that the fudge parameter is
�0 = O(log n). Thus, by using the bound in (2) for

� = �
n

= n
�

IC(⇡) + �
�

, (19)

and by taking � ! 0, we have the desired converse bound.

Appendix: An example of a mixture protocol
To illustrate the utility of our lower bound, we consider a
protocol ⇡ which takes very few values most of the time,
but with very small probability it can send many di↵erent
transcripts. The proposed protocol can be "-simulated us-
ing very few bits of communication on average. But in the
worst-case it requires as many bits of communication for "-
simulation as needed for data exchange, for all " > 0 small
enough.

Specifically, let X = Y = {1, . . . , 2n} and let ⇡ be a deter-
ministic protocol such that the transcript ⌧(x, y) for (x, y)
is given by

⌧(x, y) =

8

>

>

<

>

>

:

a if x > �2n, y > �2n

b if x > �2n, y  �2n

c if x  �2n, y > �2n

(x, y) if x  �2n, y  �2n

for some small � > 0, which will be specified later. Clearly,
this protocol is interactive.



Let (X,Y ) be the uniform random variables on X ⇥ Y.
Then,

Pr (⇧ /2 {a, b, c}) = �2.

Since

P
⇧|X(⌧(x, y)|x) =

8

>

>

<

>

>

:

1� � if x > �2n, y > �2n

� if x > �2n, y  �2n

1� � if x  �2n, y > �2n
1

2

n if x  �2n, y  �2n

and similarly for P
⇧|Y (⌧(x, y)|y), we have

ic(⌧(x, y);x, y)

=

8

>

>

<

>

>

:

2 log(1/(1� �)) if x > �2n, y > �2n

log(1/�) + log(1/(1� �)) if x > �2n, y  �2n

log(1/�) + log(1/(1� �)) if x  �2n, y > �2n

2n if x  �2n, y  �2n
.

Consider � = 1

n

, and " = 1

n

3 . Note that for any � < 2n,

Pr (ic(⇧;X,Y ) > �) � Pr (⇧{a, b, c}) = �2 =
1
n2

> ",

and

Pr (ic(⇧;X,Y ) > 2n) = 0.

Thus, the "-tail �
"

of information complexity density is given
by

�
"

= sup{� : Pr (ic(⇧;X,Y ) > �) > "} = 2n. (20)

On the other hand, we have

IC(⇡) = H(⇧|X) +H(⇧|Y )

 2�[h
b

(�) + log n� log(1/�)] + 2(1� �)h
b

(�)

 Õ(�2)

where h
b

(·) is the binary entropy function.
Also, to evaluate the lower bound of Theorem 1, we bound

the fudge parameters in that bound. To that end, we fix
"
tail

= 0 and bound the spectrum lengths ⇤
1

,⇤
2

,⇤
3

. Since
(X,Y ) is uniform, h(X,Y ) = 2n and so, ⇤

1

= 0. Also,
note that with probability 1 the conditional entropy density
h(X|⇧, Y ) is either 0 or log(�2n), which implies ⇤

2

= O(n).
A similar argument shows that ⇤

3

= O(n). Therefore, the
fudge parameter

�0 = O(log⇤
1

⇤
2

⇤
3

) = O(log n),

which in view of (20) and Theorem 1 gives D
"

(⇡) = ⌦(2n).
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