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Abstract—Two parties observing correlated random vari-
ables seek to run an interactive communication protocol.
How many bits must they exchange to simulate the pro-
tocol, namely to produce a view with a joint distribution
within a fixed statistical distance of the joint distribution
of the input and the transcript of the original protocol?
We present an information spectrum approach for this
problem whereby the information complexity of the proto-
col is replaced by its information complexity density. Our
single-shot bounds relate the communication complexity
of simulating a protocol to tail bounds for information
complexity density. As a consequence, we obtain a strong
converse and characterize the second-order asymptotic
term in communication complexity for independent and
identically distributed observation sequences. Furthermore,
we obtain a general formula for the rate of communication
complexity which applies to any sequence of observations
and protocols. Connections with results from theoretical
computer science and implications for the function compu-
tation problem are discussed.

I. INTRODUCTION

Two parties observing random variables X and Y seek
to run an interactive communication protocol m with
inputs X and Y. The parties have access to private as
well as shared public randomness. Such protocols arise
in a variety of applications in information theory, such
as distributed compression and secret key agreement,
and in theoretical computer science, such as distributed
computing and lower bounds for circuit complexity. A
common goal is to design communication protocols that
exchange as few bits as possible for accomplishing a
given task. Alternatively, one can view a communication
protocol designed for accomplishing a given task as a
stand-alone entity and simulate that protocol, namely
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produce estimates of transcripts' generated in an exe-
cution of the protocol such that the joint distribution of
the estimates and the input (X, Y") is statistically close to
the joint distribution of (X, Y") with the transcript of the
original protocol. Note that while the simulated protocol
will essentially serve the same purpose as the original
protocol, changing all probability guarantees by a negli-
gible amount, it may take a fewer bits of communication
to simulate a protocol than to execute it. This approach
of simulating a protocol to reduce communication is
intrinsic in several achievability schemes in information
theory such as in [33] and protocol compression schemes
in computer science such as in [13], [4], [9]. Indeed,
many of the standard achievability schemes using aux-
iliary random variables in source coding, such as the
classic scheme of [53], can be interpreted as a simulation
of a one-way communication protocol.

We seek to answer the following elemental question:

What is the minimum number of bits of communication
required to simulate a given protocol T to within a
fixed statistical distance €?

On the one hand, this question is related closely to
the communication complexity problem [55], which in
turn is an important tool for deriving lower bounds for
computational complexity [28] and for space complexity
of streaming algorithms [2]. On the other hand, it is
a significant generalization of the classic information
theoretic problem of distributed data compression [46],
replacing data to be compressed with an interactive pro-
tocol and allowing interactive communication as opposed
to the usual one-sided communication.

In recent years, it has been argued that the distribu-
tional communication complexity? for simulating a pro-
tocol® 7 is related closely to its information complexity*

Y“Transcript” refers to the random sequence of bits transmitted
during the execution of the protocol.

2The “distributional communication complexity” of a task is the
minimum amount of communication required for completing the task
for a fixed distribution of inputs.

3The difference between simulation and compression of protocols is
significant and is discussed in Remark 2 below.

“For brevity, we do not display the dependence of IC(7) on the
(fixed) distribution P xvy .



IC(w) defined as follows:

1c(m) € IAT A X|Y) + ITTAY|X),
where 1I denotes the random transcript generated during
the execution of the protocol m, i.e., the bits commu-
nicated during the execution of the protocol 7. For a
protocol 7 with communication complexity ||, a simu-
lation protocol requiring O(1/IC(m)|x|) bits of commu-
nication was given in [4] and one requiring 2©(¢(7)
bits of communication was given in [11] (see, also,
[5]). A general version of the simulation problem was
considered in [57], but only bounded round simulation
protocols were considered. Interestingly, it was shown
in [9] that the amortized® distributional communication
complexity of simulating n copies of a protocol 7w for
vanishing simulation error is bounded above by® IC(r).
While a matching lower bound was also derived in [9],
it is not valid in our context — [9] considered function
computation and used a coordinate-wise error criterion.
Nevertheless, we can readily modify the lower bound
argument in [9] and use the continuity of conditional
mutual information to formally obtain the required lower
bound and thereby a characterization of the amortized
distributional communication complexity for vanishing
simulation error. Specifically, denoting by D(x"™) the
distributional communication complexity of simulating
n copies of a protocol 7 with vanishing simulation error,
we have
1 n
nhﬁngc ﬁD(ﬂ' ) = IC(m).

Perhaps motivated by this characterization, or a folklore
version of it, the research in this area has focused on
designing simulation protocols for 7 requiring commu-
nication of length depending on IC(7); the results cited
above belong to this category as well. However, the
central role of IC(7) in the distributional communication
complexity of protocol simulation is far from settled
and many important questions remain unanswered. For
instance, (a) how does the distributional communication
complexity of simulating a protocol depend on the
simulation error €? (b) Is there a general expression for
distributional communication complexity which yields
information complexity as the leading asymptotic term
in the amortized setting? (c) The results available in the
amortized setting address simulation of product proto-
cols, namely the protocols with n-length inputs which

SThroughout the paper, “amortized” indicates that the observations
are independently identically distributed and the protocol to be simu-
lated is n copies of the same protocol.

6Braverman and Rao actually used their general simulation protocol
as a tool for deriving the amortized distributional communication
complexity of function computation. This result was obtained indepen-
dently by Ma and Ishwar in [33] using standard information theoretic
techniques.

execute the same protocol on each coordinate of the
input. But how about the simulation of more complicated
protocols such as a mixture 7y, of two product protocols
7 and 74 — does IC(myix) still constitute the leading
asymptotic term in the communication complexity of
simulating 7y, ?

The quantity IC(7) plays the same role in the simula-
tion of protocols as H(X) in the compression of X"
[45] and H(X]Y) in the transmission of X" by the
first to the second party with access to Y™ [46]. The
questions raised above have been addressed for these
classic problems (cf. [22]). In this paper, we answer
these questions for simulation of interactive protocols.
We introduce another information theoretic quantity that
plays a fundamental role in characterizing communica-
tion complexity of simulating a protocol and can differ
from information complexity significantly. Specifically,
we introduce the notion of information complexity den-
sity of a protocol 7 with inputs X and Y generated from
a fixed distribution P xvy.

Definition 1 (Information complexity density). The
information complexity density of a private-coin protocol
7 is given by the function

Prxy (7|2, y) Proxy (7|7, y)
Prix (7]z) Pry (7]y)
for all observations = and y of the two parties and all
transcripts 7, where Py xy denotes the joint distribution

of the observation of the two parties and the random
transcript I generated by 7.

ic(riz,y) = log

Note that IC(w) = E[ic(II; X,Y)]. We show that
it is the e-tail of the information complexity density
ic(IT; X,Y), i.e., the supremum’ over values of A\ such
that Pr(ic(I; X,Y) > A) > &, which governs the
communication complexity of simulating a protocol with
simulation error less than ¢ and not the information
complexity of the protocol. Heuristically, the information
complexity IC(w) becomes the leading term in commu-
nication complexity for simulating 7 only when, roughly,

IC(m) > /Var(ic(IT; X, Y)) log(1/¢).

This condition holds, for instance, in the amortized
regime considered in [9]. However, the e-tail of
ic(Il; X,Y) can differ significantly from IC(w), the
mean of ic(I; X,Y). In Appendix A, we provide an
example protocol with inputs of size 2™ such that for
e = 1/n3, the e-tail of ic(Il; X,Y) is greater than 2n
while IC(7) is very small, just O(n ).

7 Formally, our lower bound uses lower e-tail sup{\

Pr(ic(I; X,Y) > A) > €} and the upper bound uses upper e-tail
inf{\ : Pr (ic(I; X,Y) > \) < e}. For many interesting cases, the
two coincide.



A. Summary of results

We derive bounds for distributional communica-
tion complexity D, (7) for e-simulating a protocol .
The key quantity in our bounds is the e-tail A, of
ic(I; X,Y).

Lower bound. Our main contribution is a general
lower bound for D, (7). We show that for every private-
coin protocol w, D, (m) 2 Ac. In fact, this bound does
not rely on the structure of random variable II and
is valid for the more general problem of simulating a
correlated random variable.

Prior to this work, there was no lower bound that
captured both the dependence on simulation error € as
well as the underlying probability distribution. On the
one hand, the lower bound above yields many sharp
results in the amortized regime. It gives the leading
asymptotic term in the communication complexity for
simulating any sequence of protocols, and not just prod-
uct protocols. For product protocols, it yields the precise
dependence of communication complexity on € as well
as the exact second-order asymptotic term. On the other
hand, it sheds light on the dependence of D, (7) on &
even in the single-shot regime. For instance, our lower
bound can be used to exhibit an arbitrary separation
between D, (7) and IC(w) when ¢ is not fixed. Specif-
ically, consider the example protocol in Appendix A.
On evaluating our lower bound for this protocol, for
e =1/n3 we get D, (7) = Q(n) which is much greater
than 20¢(™) gince IC(r) = O(n~!'). Remarkably,
[21], [20] exhibited exponential separation between the
distributional communication complexity of computing a
function and the information complexity of that function
even for a fixed ¢, thereby establishing the optimality
of the upper bound D, (7) < 29(¢(™) given in [11].
Our simple example shows a much stronger separation
between D, (7) and IC(7), albeit for a vanishing e.

Upper bound. To establish our asymptotic results, we
propose a new protocol for simulating protocols with
bounded number of rounds, which is of independent
interest. For a protocol 7 with length much greater than
the number of rounds of interaction, using our proposed
protocol we show that D, (7) < A.. Much as the
protocol of [9], our simulation protocol simulates one
round at a time, and thus, the slack in our upper bound
depends on the number of rounds.

As pointed-out in footnote 7, our lower bound ap-
proaches the e-tail of ic(II; X,Y) from below and the
upper bound approaches it from above. It is often the
case that these two limits match and the leading term in
our bounds coincide. See Figure 1 for an illustration of
our bounds.

Amortized regime: second-order asymptotics. De-
note by 7" the n-fold product protocol obtained by
applying 7 to each coordinate (X, Y;) for inputs X™ and

Distributionof ic(IL; X,Y)

::Piic(H:X,Y)) SA)<e

Lower bound —=—Upper Bound

Fig. 1: Illustration of lower and upper bounds for D, ()

Y™, Consider the communication complexity D_(7™)
of e-simulating 7" for independent and identically dis-
tributed (IID) (X™,Y™) generated from P% . Using the
bounds above, we can obtain the following sharpening
of the results of [9]: With V(7) denoting the variance of
ic(I; X,Y),

D.(x") = nIc(r) + /nV(MQ ™ (e) + o(v/n).

where Q(x) is equal to the probability that a standard
normal random variable exceeds x and Q~!(e) =~
V/log(1/¢). On the other hand, the arguments in [9] or
[57] give us

D (7") > nIC(w) — nel|r| + log | X||Y|] — elog(1/e).

But the precise communication requirement is not less
but y/nV(w)log(1/e) more than nIC(x).

General formula for amortized communication
complexity. The lower and upper bounds above can be
used to derive a formula for the first-order asymptotic
term, the coefficient of n, in D (m,) for any sequence
of protocols m, with inputs X,, € X" and Y,, € V"
generated from any sequence of distributions Px_y, . We
illustrate our result by the following example.

Example 1 (Mixed protocol). Consider two protocols
m, and 7wy with inputs X and Y such that IC(m,) >
IC(my). For n IID observations (X™,Y™) drawn from
Pxy, we seek to simulate the mixed protocol Tpixn
defined as follows: Party 1 first flips a (private) coin with
probability p of heads and sends the outcome I to Party
2. Depending on the outcome of the coin, the parties
execute 7, or my n times, i.e., they use 7y} if IIp = h
and 7y if IIp = t. What is the amortized communication
complexity of simulating the mixed protocol 7pixn?
Note that

IC(Tmixn) = 1 [pIC(mn) + (1 — p)IC(m)].

Is it true that in the manner of [9] the leading asymptotic
term in D (Tpixn) 18 IC(Tnixn)? In fact, it is not so. Our
general formula implies that for all p € (0, 1),

D (Tpixn) = nIC(m) + o(n)

This is particularly interesting when p is very small and
IC(my,) > IC(my).



B. Proof techniques

Proof for the lower bound. We present a new method
for deriving lower bounds on distributional commu-
nication complexity. Our proof relies on a reduction
argument that utilizes an e-simulation to generate an
information theoretically secure secret key for X and Y
(for a definition of the latter, see [34], [1] or Section IV).
Heuristically, a protocol can be simulated using fewer
bits of communication than its length because of the
correlation in X and Y. Due to this correlation, when
simulating the protocol, the parties agree on more bits
(generate more common randomness) than what they
communicate. These extra bits can be extracted as an
information theoretically secure secret key for the two
parties using the leftover hash lemma (cf. [7], [44]).
A lower bound on the number of bits communicated
can be derived using an upper bound for the maximum
possible length of a secret key that can be generated
using interactive communication; the latter was derived
recently in [51], [52].

Protocol for the upper bound. We simulate a given
protocol one round at a time. Simulation of each round
consists of two subroutines: Interactive Slepian-Wolf
compression and message reduction by public random-
ness. The first subroutine is an interactive version of the
classic Slepian-Wolf compression [46] for sending X to
an observer of Y which is of optimal instantaneous rate.
The second subroutine uses an idea that appeared first
in [42] (see, also, [36], [56]) and reduces the number
of bits communicated in the first part by realizing a
portion of the required communication by the shared
public randomness. This is possible since we are not
required to recover a given random variable II, but only
simulate it to within a fixed statistical distance.

The proposed protocol is closely related to that in [9].
However, there are some differences. The protocol in
[9], too, uses public randomness to sample each round
of the protocol, before transmitting it using an interactive
communication of size incremented in steps. However,
our information theoretic approach provides a systematic
method for choosing this step size. Furthermore, our
protocol for sampling the protocol from public random-
ness is significantly different from that in [9] and relies
on randomness extraction techniques. In particular, the
protocol in [9] does not attain the asymptotically optimal
bounds achieved by our protocol.

Technical approach. While we utilize new, bespoke
techniques for deriving our lower and upper bounds,
casting our problem in an information theoretic frame-
work allows us to build upon the developments in this
classic field. In particular, we rely on the information
spectrum approach of Han and Verdd, introduced in the
seminal paper [23] (see the textbook [22] for a detailed
account). In this approach, the classic measures of infor-

mation such as Shannon entropy and mutual information
are viewed as expectations of certain random variables
referred to as information densities; the support of the
distribution of these random variables is referred to as
the corresponding information spectrums. For instance,
Shannon entropy H (X) is the expected value of entropy
density h(z) = —logPx (x) which takes values in
the entropy spectrum. The notion of “typical sets” is
replaced by sets with bounded information densities. The
coding theorems of classic information theory consider
IID repetitions and rely on the so-called the asymptotic
equipartition property (AEP) [14] which corresponds to
the concentration of spectrums on small intervals. We
refer to an interval of smallest length such that the
information density lies in it with probability greater than
1—¢ as an e-essential spectrum or simply as an essential
spectrum when ¢ is clear from the context. For single-
shot problems, AEP does not hold and we have to work
with the entire essential spectrum.

Our main technical contribution in this paper is the
extension of the information spectrum method to handle
interactive communication. Our results rely on the anal-
ysis of appropriately chosen information densities and,
in particular, rely on the spectrum of the information
complexity density ic(II; X,Y"). Different components
of our analysis require bounds on these information
densities in different directions, which in turn renders
our bounds loose and incurs a gap equal to the length
of the corresponding information spectrum. To overcome
this shortcoming, we use the spectrum slicing technique
of Han [22] (see, also, [25], [50] for recent applications
of spectrum slicing) to divide the essential spectrum
into small intervals with information densities closely
bounded from both sides®. While in our upper bounds
spectrum slicing is used to carefully choose the param-
eters of the protocol, it is required in our lower bounds
to identify a set of inputs where a given simulation will
require a large number of bits to be communicated.

In addition to the information complexity density
described in Definition 1, we need to work with the
following information densities and their spectrums:

(i) Entropy density of (X,Y): This density, given
by h(X,Y) = —logPxy (X,Y), captures the
randomness in the data and plays a fundamental
role in the compression of the collective data of
the two parties (cf. [22]).

(i) Conditional entropy density of X given YII:
The conditional entropy density h(X|Y) =
—log Px|y (X]Y) plays a fundamental role in the
compression of X for an observer of Y [35],

8The spectrum slicing technique was introduced in [22] to derive
the error exponents of various problems for general sources and a
rate-distortion function for general sources.



[22]. We shall use the conditional entropy density
h(X|YTII) in our bounds.

Sum conditional entropy density of (XII,YTI):
The sum conditional entropy density is given
by h(XAY) = —logPx|y (X]Y)Pyx (Y|X)
has been shown recently to play a fundamental
role in the communication complexity of the data
exchange problem [50]. We shall use the sum
conditional entropy density h (XIIAYTI).

Mutual information density of X and Y is given

by i(X AY) ¥ h(X) — h(X|Y).

(iii)

(iv)

C. Organization

A formal statement of the problem along with the
necessary preliminaries is given in the next section.
Section III contains our main results. In Section IV, we
review the information theoretic secret key agreement
problem, the leftover hash lemma, and the data exchange
problem, all of which will be instrumental in our proofs.
The most general and technical form of our lower bound
and its proof is contained in Section V and that of our
upper bound in Section VI; the proofs of the single-shot
results and the asymptotic results reported in Section III
are given in Section VII. We close with concluding
remarks in Section VIIL

D. Notations

Random variables are denoted by capital letters such
as X, Y, etc. realizations by small letters such as =z, y,
etc. and their range sets correspondingly by X, ), etc.
Protocols are denoted by appropriate subscripts or su-
perscripts with 7, the corresponding random transcripts
by the same sub- or superscripts with II; 7 is used as
a placeholder for realizations of random transcripts. All
the logarithms in this paper are to the base 2.

The following convention, described for the entropy
density, shall be used for all information densities used
in this paper. We shall abbreviate the entropy density
hpy(z) = —logPx () by h(x), when there is no
confusion about Py, and the random variable h(X)
corresponds to drawing X from the distribution P x.

Whenever there is no confusion, we will not display
the dependence of distributional communication com-
plexity on the underlying distribution; the latter remains
fixed in most of our discussion.

II. PROBLEM STATEMENT

Two parties observe correlated random variables X
and Y, with Party 1 observing X and Party 2 observing
Y, generated from a fixed distribution P xy and taking
values in finite sets X’ and ), respectively. An interactive
protocol m (for these two parties) consists of shared

public randomness U, private randomness’ Uy and
Uy, and interactive communication II;,IIo, ..., II.. The
parties communicate alternately with Party 1 transmitting
in the odd rounds and Party 2 in the even rounds. Specif-
ically, in each round ¢ one of the parties, say Party 1,
communicates and transmits a string of bits IT; € {0, 1}*
determined by the previous transmissions II;,...,II;
and the observations (X, Ux,U) of the communicating
party. To each possible value of the bit string 1I;, a
state from the state space {C,¢} is associated. If the
next state is C, the other party starts communicating.
If it is ¢, the protocol stops and each party generates
an output based on its local observation and transcript
II* = (T, ..., I1;) of the protocol. Note that the set C; of
possible values of II; and the associated next states C or
¢ for each value, are determined by a common function
of (X,Ux,U,II*"1) and (Y, Uy, U, ITI* 1) (cf. [19)), i.e.,
by a function of a random variable V' such that

H(V|X, U;y‘,U, Hi_l) = H(V|K Uy,U, Hi—l) —0.

We denote the overall transcript of the protocol by II.
The length of a protocol w, ||, is the maximum number
of bits that are communicated in any execution of the
protocol.

In the special case where C; is a prefix-free set de-
termined by IT'~!, the protocol is called a tree-protocol
(cf. [55], [31]). In this case, the set of transcripts of
the protocol can be represented by a tree, termed the
protocol tree, with each leaf corresponding to a particular
realization of the transcript. Specifically, the protocol
is defined by a binary tree where each internal node
v is owned by either party, and node v is labeled
either by a function a, : X x Uxr x U — {0,1}
or by : Y xUy xU — {0,1}. Then each leaf, or
the path from the root to the leaf, corresponds to the
overall transcript. Note that for a tree protocol the set
of possible transcripts is prefix-free; in general, one can
have protocols where this property does not hold. Our
proposed protocol is indeed a tree protocol. On the other
hand, our lower bound applies to the more general class
of interactive protocols described above.

A random variable F' is recoverable by m for Party
1 (or Party 2) if F' is function of (X,U,Ux,II) (or
(Y,U, Uy, 1II)).

A protocol with a constant U is called a private-coin
protocol, with a constant (Uy, Uy) is called a public-
coin protocol, and with (U, Uy, Uy) constant is called a
deterministic protocol.

When we execute the protocol 7 above, the over-
all view of the parties consists of random variables
(XYTIII), where the two IIs correspond to the transcript

9The random variables U, Uy, Uy, are mutually independent and
independent jointly of (X,Y).



of the protocol seen by the two parties. A simulation of
the protocol consists of another protocol which generates
almost the same view as that of the original protocol. We
are interested in the simulation of private coin protocols,
using arbitrary!'® protocols; public-coin protocols can be
simulated as private-coin protocols for each fixed value
of public randomness.

Definition 2 (s-Simulation of a protocol). Let 7 be a
private-coin protocol. Given 0 < € < 1, a protocol 7gin
constitutes an e-simulation of 7 if there exist IIy and
11y, respectively, recoverable by mg;, for Party 1 and
Party 2 such that

dvar (Prmxy, Prymy, xy) <, (D

where dyar (P,Q) = 23", |[P; — Qo| denotes the varia-
tional or the statistical distance between P and Q.

Definition 3 (Distributional communication complex-
ity). The e-error distributional communication complex-
ity D, (m|Pxy) of simulating a private-coin protocol 7
is the minimum length of an e-simulation of 7. The
distribution P xy remains fixed throughout our analysis;
for brevity, we shall abbreviate D, (7|Pxy) by D, ().

Problem. Given a protocol 7 and a joint distribution
Pxy for the observations of the two parties, we seek to
characterize D, (7).

Remark 1 (Deterministic protocols). Note that a de-
terministic protocol corresponds to an inferactive func-
tion."! A specific instance of this situation appears in
[50] where TI(X,Y) = (X,Y) is considered. For such
protocols,

dvar (Prinxy, Pryny,xy) = 1 = Pr(ll =1y =1Iy).

Therefore, a protocol is an e-simulation of a determinis-
tic protocol if and only if it computes the corresponding
interactive function with probability of error less than €.
Furthermore, randomization does not help in this case,
and it suffices to use deterministic simulation proto-
cols.'? Thus, our results below provide tight bounds for
distributional communication complexity of interactive
functions and even of all functions which are information
theoretically securely computable for the distribution
P xy, since computing these functions is tantamount to
computing an interactive function [37] (see, also, [6],

10Since we are not interested in minimizing the amount of shared
randomness used in a simulation, we allow arbitrary public coin
protocols to be used as simulation protocols.

1A function f : X x ) — Z is an interactive function if for some
r > 1 there exist functions f1, ..., fr such that f(z,y) = fr(z,v)
and, for each 1 < ¢ < r, f;41 is a function of either f;(x,y) and x
or of fi(z,y) and y.

2Note that Pr (Il = Iy (X,Y,U) =y(X,Y,U)) > 1 —¢
implies that there exists a realization U = wu of randomness such
that Pr (I = Iy (X, Y, u) = Iy(X,Y,u)) > 1 —=.

[30D).

Remark 2 (Compression of protocols). A protocol 7¢on
constitutes an e-compression of a given protocol 7 if it
recovers Iy and ITy for Party 1 and Party 2 such that

PF(HZHX:Hy)Zl—E.

Note that a randomized compression protocol 7., can
be derandomized to obtain a deterministic protocol with
the same communication complexity. In fact, for de-
terministic protocols simulation and compression co-
incide. In general, however, compression is a more
demanding task than simulation. For instance, consider
the following simple example. Let inputs X and Y be
constant, and let Uy = (Ux,1,...,Ux or—1) and Uy =
(Uya,...,Uyar_1) be two independently identically
distributed sequences of independent and unbiased coin
flips. Let m be a tree protocol of depth r such that the
next node to communicate is given by Uy ,, if v is at an
odd depth or Uy, if v is at an even depth. To compress
this protocol, the parties must reproduce exactly the same
path as IT = II(Uxy, Uy) from the root to a leaf, which
requires roughly r bits of communication. On the other
hand, to simulate the same protocol the parties need
not communicate at all since the path can be sampled
from the public coin U = (Uy,...,U,) consisting of r
independent and unbiased coin flips.

Indeed, our results show that in many cases, such as
the amortized regime, compression requires strictly more
communication than simulation. Specifically, all the re-
sults for e-simulation in this paper can be modified to
get corresponding results for e-compression by replacing
the information complexity density ic(7;z,y) by

h(t|z) + h(tly) = —log Pryx (7]x) Pryy (7ly) ;

the expected value of the latter quantity exceeds that
of the former. Therefore, compression requires more
communication than simulation, in general. The corre-
sponding results for compression remain essentially the
same as those for simulation and have been omitted.

III. MAIN RESULTS

We derive a lower bound for D, (7) which applies
to all private-coin protocols 7 and, in fact, applies to
the more general problem of communication complexity
of sampling a correlated random variable. For protocols
with bounded number of rounds of interaction, i.e.,
protocols with r = r(X,Y,U,Ux,Uy) < Tmax with
probability 1, we present a simulation protocol which
yields upper bounds for D, (7) of a similar form as
our lower bound. Instead of stating the most general
technical results here, we present specific instantiations
of interest: The single-shot regime, the amortized regime,
and the results for the simulation of general protocols.



The general lower bound is given in Section V and the
general upper bound in Section VIL.'?

A. Single-shot bounds

Our first result claims that for every protocol 7, D, ()
is bounded below by the e-tail of ic(II; X,Y") up to an
O(loglog |X||Y]) term.

Theorem 1. Given 0 < ¢ < 1 and a protocol 7, for
every 0 <n<1/3

D, (m) > sup{\: Pr(ic(IL X,Y) > \) > e+ 3n}
—5loglog [X[|V| = (1), (2)

where
d(n) = 9log — + 5loglog — + log ——— + 14.
n n 1—-3n

A key feature of the bound above is that it brings
out a precise dependence on the simulation error ¢ in
terms of the e-tail of ic(II; X,Y); the expected value of
ic(IT; X, Y), namely the information complexity IC(7),
is a rough approximation of this e-tail.

Next, we show a matching upper bound for D. (),
albeit only for a restricted class of protocols where the
length of the protocol is much less than the maximum
number of rounds of interaction. Note that this restriction
is significant since a protocol where parties communicate
bits alternately has as many rounds of interaction as the
length of the protocol. Nevertheless, for the aforemen-
tioned restricted class of protocols we show that D, (7)
is bounded above by the e-tail of ic(Il; X,Y’) up to an

O(rmaxy/|m|) term.

Theorem 2. Consider a protocol m with the maximum
number of rounds T.x < 00 and 0 < n < 1. Letting

d
an 11 7y

N =12 7rpax /|7 + 3log ——=,
n

Jor every & < e < 1, we have

D (m) <inf {\: Pr(ic(IL X,Y) > \) <e—&'} + \.

B. Amortized regime: second-order asymptotics

It was shown in [9] that information complexity of
a protocol equals the amortized communication rate for
simulating the protocol, i.e.,

1
lim lim —D.(7"|P%y) = IC(n),

e—=>0n—oco n

3While the single-shot lower bound in Theorem 1 is tight enough
to imply the converse part of Theorem 3, the single-shot upper bound
in Theorem 2 does not imply the achievability part of Theorem 3. The
relaxed version presented in this section exhibits an explicit form of
residual terms.

where P%,. denotes the n-fold product of the distribu-
tion Pxy, namely the distribution of random variables
(X;,Y:), drawn IID from Pyy, and 7" corresponds
to running the same protocol 7 on every coordinate
(X;,Y;). Thus, IC() is the first-order term (coefficient
of n) in the communication complexity of simulating the
n-fold product of the protocol. However, the analysis
in [9] sheds no light on finer asymptotics such as the
second-order term or the dependence of D.(7"|P%.-)
on'* . On the one hand, it even remains unclear from [9]
if a positive € reduces the amortized communication rate
or not. On the other hand, the amortized communication
rate yields only a loose bound for D.(7"|P%,-) for a
finite, fixed n. A better estimate of D.(n"|P’% ) at a
finite n and for a fixed € can be obtained by identi-
fying the second-order asymptotic term. Such second-
order asymptotics were first considered in [47] and have
received a lot of attention in information theory in recent
years following [24], [40].

Our general lower bound and upper bound show
that the leading term in D.(7"|P%, ) is roughly the
e-tail A. of the random variable ic(II"; X™, Y") =
o ic(I; X;,Y;), a sum of n IID random variables.
By the central limit theorem the first-order asymptotic
term in A. equals nE[ic(Il; X,Y)] = nIC(w), re-
covering the result of [9]. Furthermore, the second-
order asymptotic term depends on the variance V(7) of
ic(Il; X,Y), i.e., on

V(r) ¥ Var [ic(I; X, V)] .
We have the following result.

Theorem 3. For every 0 < € < 1 and every protocol T
with V() > 0,

De(n"|Pky) = nIC(m) + /nV(m)Q " () + o(v/n),

where Q(x) is equal to the probability that a standard
normal random variable exceeds .

As a corollary, we obtain the strong converse.

Corollary 4. For every constant 0 < e < 1, the
amortized communication rate

1
lim —D (7" |P%y ) = IC(m).

n—o00 N

Corollary 4 implies that the amortized communication
complexity of simulating protocol 7 cannot be smaller
than its information complexity even if we allow a pos-
itive error. Thus, if the length of the simulation protocol
Tsin 18 “much smaller” than nIC(w), the corresponding
simulation error € = &,, must approach 1. But how fast
does this €, converge to 1?7 Our next result shows that

14The lower bound in [9] gives only the weak converse which holds
only when € =g, — 0 as n — oo.
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this convergence is exponentially rapid in n.

Theorem 5. Given a protocol w and an arbitrary § > 0,
for any simulation protocol mgiy, With

|Tsin| < n[IC(m) — 6],

there exists a constant E = E(0) > 0 such that for every
n sufficiently large, it holds that

—En
dyar (PHHHH Xy, Prigmg X,,LY,L) > 12 Fn,

A similar converse was first shown for the channel
coding problem by Arimoto [3] (see [16], [41] for further
refinements of this result), and has been studied for other
classic information theory problems as well.

In the theoretical computer science literature, such
converse results have been termed direct product the-
orems and have been considered in the context of the
(distributional) communication complexity problem (for
computing a given function) [10], [12], [27]. Our lower
bound in Theorem 13, too, yields a direct product
theorem for the communication complexity problem. We
state this simple result in the passing, skipping the details
since they closely mimic Theorem 5. Specifically, given
a function f on X x ), by a slight abuse of notations
and terminologies, let D.(f) = D.(f|Pxy) be the
communication complexity of computing f. As we note
in Remark 3, our general lower bound in Theorem 13
remains valid for an arbitrary random variables II, and
not just an interactive protocol. Then, by following the
proof of Theorem 5 with F' = f(X,Y) replacing II
in the application of Theorem 13, we get the following
direct product theorem.

Theorem 6. Given a function f and an arbitrary § >
0, for any function computation protocol ® computing
estimates Fx ,, and Fy ,, of f" at the Party I and Party
2, respectively, and with length

| < n[H(F|X)+ H(F|Y) - 4], 3)

there exists a constant E = E(0) > 0 such that for every
n sufficiently large, it holds that

Pr(Fy,=Fy,=F") <278

where F" = (Fy,...,F,) and F; = f(X;,Y;), 1 <i <
n.

Recall that [9], [33] showed that the first order asymp-
totic term in the amortized communication complexity
for function computation equals the information com-
plexity IC(f) of the function, namely the infimum over
IC(m) for all interactive protocols 7 that recover f with
0 error. Ideally, we would like to show an Arimoto
converse for this problem, i.e., replace the threshold on
the right-side of (3) with n[IC(f)—d]. The direct product
result above is weaker than such an Arimoto converse,

and proving the Arimoto converse for the function com-
putation problem is work in progress. Nevertheless, the
simple result above is not comparable with the known
direct product theorems in [10], [12] and can be stronger

in some regimes'.

C. General formula for amortized communication com-
plexity

Consider arbitrary distributions Py y, on X" x "
and arbitrary protocols 7, with inputs X,, and Y,, taking
values in X” and )", for each n € IN. For vanishing
simulation error &,, how does D, (7,|Px,v,) evolve
as a function of n?

The previous section, and much of the theoretical
computer science literature, has focused on the case
when Px y, = P%, and the same protocol 7 is
executed on each coordinate. In this case, the leading
asymptotic term is characterized by the information
complexity of m. However, as we have seen in Example
1, for a mixed protocol the leading asymptotic term
is characterized by the behavior of the “worst compo-
nent” of the mixture. In this section, we formalize this
observation by identifying the leading asymptotic term
in D, (m,|Px,y,) for a general sequence of distribu-
tions'® {Px, v, }° ; and a general sequence of protocols
7 = {m,}52,. Formally, the amortized (distributional)
communication complexity of « for {Px vy, }32; is
given by!

D(x) 2 Jim 1im sup lD5(71'n|PX“y").
€20 pooo M

Our goal is to characterize D(7r) for any given se-
quences P,, and 7. We seek a general formula for D ()
under minimal assumptions. Since we do not make any
assumptions on the underlying distribution, we cannot
use any measure concentration results. Instead, we take
recourse to probability limits of information spectrums
introduced by Han and Verdd in [23] for handling
this situation (cf. [22]). Specifically, for a sequence of
protocols 7 = {m, }>2; and a sequence of observations
(X,Y) = {(X,,Y,)}22,, the sup information complex-
ity is defined as

IC(m)

e 1
def inf {a | lim Pr (ic(Hn;Xn,Yn) > oz) = ()} ,
n

n—oo

where, with a slight abuse of notation, II,, is the tran-
script of protocol 7, for observations (X,,,Y,,). The re-

I5The result in [10], [12] shows a direct product theorem when we
communicate less than nIC(f)/poly(logn).

16We do not require P, y, to be even consistent.

17 Although D(r) also depends on {Px, v, }5;, we omit the
dependency in our notation.



sult below shows that it is nIC(#), and not IC(m, ), that
determines the communication complexity in general.

Theorem 7. For every sequence of protocols ® =
{mntnis,
D(m) = IC(m).

For the case when 7, = 7™ and Px v, = Py, it fol-
lows from the law of large numbers that IC(7) = IC(7)
and we recover the result of [9]. However, the utility of
the general formula goes beyond this simple amortized
regime. Example 1 provides one such instance. In this
case, IC(7r) can be easily shown to equal IC(my,) for any
bias of the coin Ilj.

IV. BACKGROUND: SECRET KEY AGREEMENT AND
DATA EXCHANGE

Our proofs draw from various techniques in cryp-
tography and information theory. In particular, we use
our recent results on information theoretic secret key
agreement and data exchange, which are reviewed in this
section together with the requisite background.

A. Secret key agreement by public discussion

The problem of two party secret key agreement by
public discussion was alluded to in [8], but a proper
formulation and an asymptotically optimal construction
appeared first in [34], [1]. Consider two parties with the
first and the second party, respectively, observing the
random variable X and Y. Using an interactive protocol
7 and their local observations, the parties agree on a
secret key. A random variable K constitutes a secret
key if the two parties form estimates that agree with
K with probability close to 1 and K is concealed, in
effect, from an eavesdropper with access to the transcript
IT and a side-information Z. Formally, let K x and Ky,
respectively, be recoverable by an interactive protocol 7
for the first and the second party. Such random variables
Ky and Ky with common range X constitute an -
secret key of length log |K| if the following condition is
satisfied:

dyar (PKXKyHZ7P1(1i?Lf X PHZ) <e,

where

1kx =k
Pl (v, ky) = 2022,

The condition above ensures both reliable recovery,
requiring Pr (Kx # Ky) to be small, and information
theoretic secrecy, requiring the distribution of Ky (or
Ky) to be almost independent of the eavesdropper’s side
information (II, Z) and to be almost uniform. See [51]
for a discussion.

Definition 4. Given 0 < ¢ < 1, the maximum length of
an e-secret key is denoted by S.(X,Y|Z), and for the
case when Z is constant by S.(X,Y).

By its definition, S; (X, Y'|Z) has the following mono-
tonicity property.

Lemma 8 (Monotonicity). For a private-coin protocol
T,

S.(X,Y|Z) > S.(XII, YII| ZII).

Furthermore, if Vx and Vy can be recovered by m for
the first and the second party, respectively, then

S(X,Y|Z) > S:(XVy,YVy|ZID).

The claim holds since the two parties can generate a
secret key by first running 7 and then generating a secret
key for the case when the first party observes (X,II),
the second party observes (Y,II) and the eavesdropper
observes (Z,II). Similarly, the second inequality holds
since the parties can ignore a portion of their obser-
vations and generate a secret key from (X,Vy) and
(Yv Vy)

1) Leftover hash lemma: A key tool for generating
secret keys is the leftover hash lemma which, given a
random variable X and an eavesdropper’s [-bit observa-
tion Z, allows us to extract roughly H,in (Px)—1{ bits of
uniform bits, independent of Z. We shall use a slightly
more general form. Given random variables X and Z,
let

def . Pxz(z,z)
Hoin (P = inf — log ————.
(Pxz | Qz) nf —log =573

We define the conditional min-entropy of X given Z as

Hmin (PXZ | Z)

def

sup Hoin(Pxz | Qz). 4

Qz : supp(Pz) C supp(Qz)
An alternative operational form for conditional min-
entropy was derived in [29] (see, also, [26, Theorem
2(ii)]), showing that Hy,i, (Pxv|Y) corresponds to the
— log of the average conditional guessing probability for
X given Y, i.e.,

Huin (Pxz | Z) = —log ) Py () max Py (z]y) .
Y

However, the variational form in (4) yields useful bounds
by appropriately fixing Qz and is more more suited for
our purpose.

Next, let F be a 2-universal family of mappings f :
X — K, i.e., for each 2’ # z, the family F satisfies

1 , 1
7 > 1(f(z) = f(2) < T

fer

Lemma 9 (Leftover Hash). Consider random variables



X,Z and V taking values in countable sets X, Z, and
a finite set V), respectively. Let S be a random seed such

that fs is uniformly distributed over a 2-universal family
F. Then, for Kg = fs(X)

]ES {dvar (PKSVZa PunifPVZ)}
< LIV o),

where Punis is the uniform distribution on K.

In other words, the leftover hash lemma says that,
when the legitimate parties share X and the eavesdropper
observes V, Z, a secret key of length

log |K| > Huin (Px2 | Z) — log|V| - 2log(1/2n) — 1
)

with security Eg {dvar (Pxsvz, PmitPvz)} < n can
be generated. The version of leftover hash lemma above
was given in [25] and followed readily from [43].

As an application of the leftover hash lemma above,
we get the following useful result.

Lemma 10. Consider random variables X,Y 7 and V
taking values in countable sets X, ), Z, and a finite set
V, respectively. Then,

Soe (X, Y|ZV) > S.(X,Y|Z)—log [V|-2log(1/2¢)—1.

The proof is relegated to Appendix B.

2) Conditional independence testing upper bound for
secret key lengths: Next, we recall the conditional inde-
pendence testing upper bound for S.(X,Y"), which was
established in [51], [52]. In fact, the general upper bound
in [51], [52] is a single-shot upper bound on the secret
key length for a multiparty secret key agreement problem
with side information at the eavesdropper. Below, we
recall a specialization of the general result for the two
party case with no side information at the eavesdropper.
In fact, we consider a slightly relaxed version of the
bound (cf. [52, Eq. (7)]), which is summarized in the
following lemma.

Lemma 11. For every 0 <e <1, n> 0 and )

S: (X,Y)
B Pxy (X,Y) ) B >
< A-—log (Pr (logQX X)Qy (V) <A eE—n .
+21og1,
n

Sor all distributions Qx and Qy, where (x); =
max{0, z}.

B. The data exchange problem

The next primitive that will be used in the reduction
argument in our lower bound proof is a protocol for

10

data exchange. The parties observing X and Y seek to
know each other’s data. What is the minimum length of
interactive communication required? This basic problem,
first studied in [38], is in effect a two-party symmetric
version of the Slepian-Wolf compression [46] (see [15]
for a multiparty version). In a recent work [50], we
derived tight lower and upper bounds for the length of a
protocol that, for a given distribution P xy-, will facilitate
data exchange with probability of error less than €. We
review the proposed protocol and its performance here;
first, we formally define the data exchange problem.

Definition 5. For 0 < ¢ < 1, a protocol 7 attains e-data
exchange if there exist Y and X which are recoverable
by 7 for the first and the second party, respectively, and
satisfy

PX=X,VY=Y)>1-c

Note that data exchange corresponds to simulating a
(deterministic) interactive protocol 7 where II; (X) = X
and [Ty = Y; attaining e-data exchange is tantamount
to e-simulation of 7. In fact, the specific protocol for
data exchange proposed in [50] can be recovered as a
special case of our simulation protocol in Section VI.
The next result paraphrases [50, Theorem 2] and can
also be recovered as a special case of Lemma 22.

We paraphrase the result form [50] in a form that is
more suited for our application here. The data exchange
protocol proposed in [50] relies on slicing the spectrum
of h(X|Y) (or h(Y|X)). Let E¢as1 denote the tail event
h(X|Y) & [Nl ins Mmax)» Where we take X! . sufficiently
small and X/ sufficiently large so that the probability
Pxy (Etain) of the tail event is smaller than the desired
level. The protocol entails slicing an essential spectrum
M in> Amax) i0to N parts of length A = Amax—Amin

each.

Theorem 12 ([50, Theorem 2], Lemma 22). Given
A>0 A >0, >0 and N as above, there exists
a deterministic protocol for c-data exchange satisfying
the following properties:

(i) Denoting by Eerror = {X # XorY # Y} the
error event, it holds that

Pxy (Eorvor N {R(XAY) < A}
< Pxy (Eeas1) + N275,

which further yields that the probability of error €
is bounded above as

e <Pxy (W(XAY) > \) +Pxy (Epasn) + N278,
where
h(XAY) = —log PX|Y (X|Y) PY\X (YX);

(ii) the protocol communicates no more than A + A +


Shun
Highlight

Shun
Highlight


N + & bits;
(iii) for every (X,Y) rin < RXY) <
A the transcript of the protocol can take no

more than 2MXAY)HAE yalyes.

such that N

Note that property (iii) above, though not explicitly
stated in [50, Theorem 2] or in the general Lemma 22
below, follows simply from the proofs of these results. It
makes the subtle observation that while, for each (X,Y)
such that A\, < hM(X|Y) < XN . R (XAY) + A+
N + £ bits are communicated to interactively generate
the transcript, the number of (variable length) transcripts
is no more than'® 2MXAY)+A+ENHE property (ii) above
was crucial to establish the communication complexity
results of [50]; property (iii) was not relevant in the
context of that work. On the other hand, here we shall
use the protocol of Theorem 12 in our reduction to secret
key agreement in the next section and will treat the
communication used in data exchange as eavesdropper’s
side information. As such, it suffices to bound the
number of values taken by the transcript; two to the
power of the number of bits actually communicated in
the interactive protocol is a loose upper bound on the
former quantity.

Interestingly, our simulation protocol given in Sec-
tion VI is used both in our upper bound to compress
a given protocol and in our lower bound to complete the
reduction argument.

V. GENERAL LOWER BOUND

In this section, we describe our general lower bound
which yields all the lower bounds reported in Section III
as special cases. Formally, given a private-coin protocol
m, let mgin be its e-simulation and IIx and IIy be the
corresponding estimates of the transcript II for Party
1 and Party 2, respectively. Our result involves the
lengths of essential spectrums of information densities
G =h(X,Y), (2 = h(X|YTI), and (3 = h (XTIAYTI).
Let the tail events &; < {¢G: ¢ [/\Ef])in, AEﬁLX]}, i=1,2,3,
satisfy

Pr (51) + Pr (52) + Pr (53) S Etail, (6)

where €ta51 can be chosen to be appropriately small
by taking )\I(:gn sufficiently small and /\Eﬁax sufficiently
large, i.e., for i = 1,2,3, [)\(Z) /\Efl)ax] is an essential

spectrum of (;. Further, let A; = )\ffl)ax—)\ff;)in, 1=1,2,3.

Theorem 13. Let 0 < A < A, i = 1,2,3 and
0 < €tai1 < 1 satisfy (6). Given 0 < ¢ < 1 and a
private-coin protocol T, for every 0 <n < 1/3

D, (m) > sup{\: Pr(ic(I; X,Y) > \) > e+€'} — X,
(M

18The N-bit ACK-NACK feedback used in the protocol can be
determined from the length of the transcript.

11

where € = €211 + 21 and, letting

A = A0
Ai = PRGN
17 lf /\max == /\

min’

if My > A%

min’

N = 2log A1Az + log As + log

1
=31 +910g77 + 4.
Remark 3. The result above does not rely on the in-
teractive nature of II and is valid for simulation of any
random variable II. Specifically, for any joint distribution
Prxy, an e-simulation satisfying (1) must communicate
at least as many bits as the right-side of (7).

The appearance of fudge parameters such as ¢’ and
A’ in the bound above is typical since the techniques to
bound the tail probability of random variables invariably
entail such parameters, which are tuned based on the spe-
cific scenario being studied. For instance, the Chernoff
bound has a parameter that is tuned with respect to the
moment generating function of the random variable of
interest. More relevant to the problem studied here, such
fudge parameters also show up in the evaluation of error
probability of single-party non-interactive compression
problems (cf. [23], [22]).

When the fudge parameters € and )\ are negligible,
the right-side of the bound above is close to the e-tail of
ic(Il; X, Y). Indeed, the fudge parameters turn out to
be negligible in the cases reported in Section III. For
instance, for the amortized case ¢’ can be chosen to
be arbitrarily small. The parameter )\’ is related to the
smallest length of an essential spectrum A, which, by the
central limit theorem, is O(y/n); thus, X' = O(logn).
On the other hand, the e-tail of ic(I; X,Y) is O(n).
Thus, the log n order fudge parameter )" is negligible in
this case. The same is true also for the example protocol
in Appendix A.

In the remainder of this section, we provide a proof
of Theorem 13. As described in the introduction, the
main component in the proof of our lower bound is
a reduction argument which uses a given simulation
protocol to generate a secret key for X and Y. However,
there are two caveats in the heuristic approach described
in the introduction:

First, to extract secret keys from the generated common
randomness we rely on the leftover hash lemma. In
particular, the bits are extracted by applying a 2-universal
hash family to the common randomness generated. How-
ever, the range-size of the hash family must be selected
based on the min-entropy of the generated common ran-
domness, which is not easy to estimate. To remedy this,
we communicate more using a data-exchange protocol
proposed in [50] to make the collective observations
(X,Y) available to both the parties; a good bound
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for the communication complexity of this protocol is
available. The generated common randomness now in-
cludes (X,Y’) for which the min-entropy can be easily
bounded and the size of the aforementioned extracted
secret key can be tracked. A similar common randomness
completion and decomposition technique was introduced
in [49] to characterize a class of securely computable
functions.

Second, our methodology described above requires both
side bounds for various information densities. A direct
application of this method will result in a gap equal to
the effective length of various spectrums involved. To
remedy this, we apply the methodology described above
not to the original distribution Pxy but a conditional
distribution P xy|¢ where the event & is an appropri-
ately chosen event contained in single slices of various
spectrums involved. Such a conditioning is allowed since
we are interested in the worst-case communication com-
plexity of the simulation protocol.

We fix these gaps using careful spectrum slicing ar-
guments. To make the exposition clear, we have divided
the proof into four steps:

A) From simulation to probability of error: In the
first step, we use a coupling argument to replace
the variational distance based error criterion of
simulation to a more tractable probability of error
criterion.

B) From partial knowledge to omniscience: Next, as
an intermediate step towards generating a secret
key, once the parties execute the simulation pro-
tocol, we use the aforementioned data exchange
protocol to enable omniscience. This yields a
tractable form of common randomness which in
turn yields tractable bounds for the rate of secret
key generated.

C) From original to conditional probabilities: The
next step is technical and uses a spectrum slicing
argument to identify an appropriate critical event
conditioned on which we get the desired tight
bounds.

D) From simulation to secret keys: Finally, we com-
plete the proof of reduction by combining all the
previous steps.

A. From simulation to probability of error

We first use a coupling argument to replace the
e-simulation condition with an e probability of error
condition. Recall the maximal coupling lemma (see [48]
for a general version of this result).

Lemma 14 (Maximal Coupling Lemma ). For any two
distributions P and Q on the same set, there exists a joint
distribution Pxy with X ~ P and Y ~ Q such that

PI‘(X #Y) :dvar (PaQ)

12

Given the random transcript of the protocol II and
its estimates IIy and IIy produced by the simu-
lation, by the maximal coupling lemma, for each
x,y there exists a joint distribution P11, x=2,v=y
such that the marginal distributions Prjx—z,y—, and
PHXHy|X:a:,Y:y are the same as that of the original
random variables II, IIy, and IIy and

Pr(ll=Tly =Ty|X =2,V =y)
=1 — dvar (Primjx=z,v=y> Prixtiy|x=2,v=y) ,

where, with an abuse of notation, we use the same
symbol II for the random transcript as well the coupled
marginal defined here'.

Consequently,

PI"(H = HX = Hy)
=1 *ZPXY (ﬂf,y) X
T,y

dvar (Prin|x =z, v =y Prixtiy| X =2,y =y)
=1 —dvar (Prmnxy, Priymy, xv)
>1—e. 8)

As pointed in footnote 10, it suffices to consider public-
coin protocols 7gi, using shared public randomness U.
For concreteness (and convenience of proof), we define
the joint distribution for (IITIxIIy XY U) as

Pro.nynxyv = PoanynxyPuman, xy. (9

Note that the marginal P, xyy remains as in the
original protocol. In particular, (X,Y") is jointly inde-
pendent of U.

It should also be noted that, while (8) resembles the
condition for compression given in Remark 2, simulation
does not imply compression in general. For instance, in
the example given in Remark 2, the original transcript
IT is a function of private coins Uy and Uy. However,
the public coin U constitutes a simulation with estimates
IIx =IIy = U since both IT and U are independent of
X,Y and the marginal distribution of U is the same as
that of II. Therefore, the required coupling is obtained
with U in the role of II. But the coupled marginal II is
independent of the original transcript which is a function
of (Ux,Uy). Thus, the coupled IT does not constitute
a compression of the protocol; compression mandates
the reproduction of exactly the same trascript with large
probability.

B. From partial knowledge to omniscience

Instead of extracting a secret key from the common
randomness generated by the protocol 7g;,, we first use

191t should be noted that the coupled marginal differs from the
original random transcript to be simulated and may not even be a
function of (X,Y,Ux, Uy).



the data exchange protocol of Theorem 12 to make all
the data available to both parties, which was termed
attaining omniscience® in [15]. In particular, the parties
run the protocol 7gi, followed by a data exchange
protocol for (XTI, YTI) to recover (X, Y) at both parties.
Once both parties have access to (X, Y), they can extract
a secret key from (X,Y’) which will be used in the
reduction in our final step.

Formally, with the notations introduced in Sec-
tion IV-B, let mpg be the data exchange protocol of
Theorem 12 with X and Y replaced by (XII) and

NG

!/
maxs )‘min

A, respectively, and with A =
Aok = /\ggx. Then, denoting by Eerror the error event

for the protocol mpg Theorem 12(i) yields

Pr (Eerror N ES) < Pr (&) + Np27¢, (10)

where & and &5 are as in (6). Furthermore, for every
realization (X,Y") ¢ & the number possible transcripts
IIpg is no more than

2h(XHAYH)+A2+£. (11)
Without loss of generality we can assume that error
occurs in mpg only when {X # X} or {V # Y}, since
both parties have access to II.

We seek to use mpg for recovering Y and X, respec-
tively, at Party 1 and Party 2 by running mpg successively
after 7qin. Note that while 7pg is designed to enable the
exchange of input random variables XII and YTI, we
execute it with the output (XTI, YTly) as the input.
We fix this gap in the result below by relying on (8) and
accounting for the event {II = IIy = IIy} separately.

Lemma 15. Let mpg be the data exchange protocol for
(XTI, YII) described above and 7ssy be an e-simulation
of I1. Denoting by X and Y the estimates of X and' Y
formed at Party 2 and Party 1 by applying mpg to the
output (XIx,YTly) of Tsin. Then,

Pr (X X,V = Y) > 1——Pr (&)—Pr (§3)—No27%.

Proof: Recall that mpg is a deterministic protocol
and X and Y are functions of (X,Y,II,1I). Denote by
A the event A = {II = IIy = Il }. Note that the error
event Eerror Of mpe is specified by

ECrror = {X(X,Y,ILT) = X, V(X,Y,I,IT) = Y}.

Then, we have
Pr ({X(X, V. L, IIy) = X, ¥ (X, Y, Ly, IIy) = Y} )
> Pr(AN{X(X,Y,IIy,1Iy) = X,
20Csiszar and Narayan considered a multiterminal version of the data

exchange problem in [15] and connected the minimum (amortized) rate
of communication needed to the maximum (amortized) secret key rate.
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V(XY Iy, Ily) = Y} N )
= Prayiynixy (AN Egor NES)
> Pr,mynxy (A) + Pr(&3)
— Priynynxy (Eerror N E5) — 1

>1—¢c—Pr(&)—Pr(&)— Ny27¢, (12)

where the last inequality follows from (8) and (10). W

C. From simulation to secret keys: A rough sketch of the
reduction

The first step in our proof is to replace the simulation
condition (1) with the probability of error condition (8)
for the joint distribution Prr,mynxyv in (9).

Next, we “complete the common randomness,” i.e.,
we communicate more to facilitate the recovery of Y
and X at Party 1 and Party 2, respectively. To that end,
upon executing msip, the parties run the data exchange
protocol mpg of Theorem 12 for (XII) and (YTII), with
(X,IIy) and (Y,IIy) in place of (XTII) and (YTI),
respectively. Condition (8) guarantees that the combined
protocol (7gin, mpe) recovers Y and X at Party 1 and
Party 2 with probability of error less than e.

We now sketch our reduction argument. Consider the
secret key agreement for X and Y when the eaves-
dropper observes U. By the independence of (X,Y)
and U, S,(XU,YU|U) = S,(X,Y), and further, the
result of [51] shows that S, (X,Y’) is bounded above,
roughly, by the mutual information density (X AY) =
logPxy (X,Y) /Px (X)Py (Y) (cf. Lemma 11), i.e.,

Sy(XU,YUIU) = S,(X,Y) Si(XAY).  (13)

On the other hand, we can generate a secret key using
the following protocol:

1) Run the combined protocol (mgin,mpg) to attain
data exchange for X and Y, resulting in a com-
mon randomness of size roughly h(X,Y|U) =
h(X,Y).

2) The data exchange protocol mpe for (XII) and
(YTI) communicates roughly h (XTIAYTI) bits
for every fixed realization (XY II). Thus, the
combined protocol (7giy, 7pg), Which allows both
parties to recover (X,Y’), communicates no more
than |7sin| + h (XIIAYTI) bits for every fixed
realization (X,Y,II). Using the leftover hash
lemma, we can extract a secret key of rate roughly
h(X,Y) = |Tsin| — h (XTIAYTI).

The following approximate inequalities summarize our
reduction:

S,(XU,YU|U)
> S (XY, XY [TginlTpel)
Z ST](X}A/aXY|U) - ‘ﬂ-sim| —h (XHAYH)



~ h(X,Y) — |Tawm| — h (XTIAYTI) (14)

where the first inequality is by Lemma 8 and the the
second by Lemma 9. Note that the idea of generating
secret keys from data exchange was first proposed in
[15] in an amortized, IID setup and was shown to yield
a secret key of asymptotically optimal rate.

From (13) and (14) it follows that

[Mein| = R(X,Y) — h (XIIAYT) — (X AY)
=ic(I X,Y),

which is the required lower bound.

Clearly, the steps above are not precise. We have used
instantaneous communication and common randomness
lengths in our bounds whereas a formal treatment will
require us to use worst-case performance bounds for
these quantities. Unfortunately, such worst-case bounds
do not yield our desired lower bound for D (). To
fill this gap, we apply the arguments above not for
the original distribution Py, 1, mxyy but for the con-
ditional distribution P, m,mxyvje where the event
& is carefully constructed in such a manner that the
aforementioned worst-case bounds are close to instan-
taneous bounds for all realizations. Specifically, £ is
selected by appropriately slicing the spectrums of the
various information densities that appear in the worst-
case bounds.

D. From original to conditional probabilities: A Spec-
trum slicing argument

To identify an appropriate critical event for condition-
ing, we take recourse to spectrum slicing. Specifically,
we identify an appropriate subset of intersection of slices
of entropy spectrum and the sum conditional entropy
spectrum described in Section I-B. For the combined
protocol (7gin, Tpe), the estimates (X , Y) as above, and
for fixed )\S;x,)\fii)n,/\ggx,/\gﬂ,Al,Ag that will be

specified later, let
Esin = {H =y = Hy}7
Soe = {X(X,Y, Ty, 0y) = X,
Y(X,Y, Iy, Iy) = Y},
E={ic(I; X,Y) > A}

VN = D0+ (- DA S R(X,Y) <AL +iAY,
1<i< Nla

(3) _ @)
P =

min

+(j — DA < h(XIIAYTI)
<AB) L jAgY, 1</ <N,

where

Mnax = Atah Afnax = Ao
N, = min and Ny = min

Al AS
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Note that U; Si(l) = &7 and U; 5]@ = &5, where the
events & and & are as in (6). Finally, define the event
&i; as follows:

Eij =& NEENELN gi(l) n 5;3)’
1<i<N;,1<j<Ns.
The next lemma says that (at least) one of the events &;;

has significant probability, and this particular event will
be used as the critical event in our proofs.

Lemma 16. There exists i,j such that

Pr(€)\) — € — €sai1 — N227¢ qer
Pr (&) > Lol
r (&) > NN, o
Proof. Note that the event i, N Epg N ES is the same
as the event AN E, o N ES of (12). Therefore,

Pr(&sinN&EENEXNET NES)

>Pr(€)) +Pr(EsinN&e NES) +Pr(&5) —2
>Pr(€y) —e—Pr(&) — Pr(&) — No27¢ — Pr (&)
> Pr(&€)) — €~ €rain — NQQ_Ea

15)

where the second inequality uses (12) and and the
third uses (6). The proof is completed upon noting that
{&i;}:,; constitutes a partition of Es;nNEENEXNEFNES
with N N3 parts.

E. From simulation to secret keys: The formal reduction
proof

We are now in a position to complete the proof of our
lower bound. For brevity, let £ denote the event &;; of
Lemma 16 satisfying Pr (€) > a.

Our proof essentially formalizes the steps outlined in
Section V-C, but for the conditional distribution given
€. With an abuse of notation, let S, (X,Y|Z,£) denote
the maximum length of an n-secret key for two parties
observing X and Y, and the eavesdropper’s side infor-
mation Z, when the distribution of (XY, Z) is given by
Pxyz|e. Then, using Lemma 11 with Qx = Px and
Qy = Py, we get the following bound in place of (13):

San(X,Y1E)
Pxyie (z,9)

<7 —log (Pr<{(x’y) o Py ()
< 7} ‘g) - 37;)+ +2log(1/n)

<v—log (Pr<{(f”’y) +log m

Jrloga} ‘5) 377> 2log(1/n), (16)
+

<7

where 0 < 1 < 1/3 is arbitrary and in the previous



inequality we have used

Pxy (2,y) _ Pxy (z,y)
Pr(&) -~ a )

Pxye (z,y[€) <

To replace (14), note that by Lemma 8
Son(X,YE)
> Son(XTgsnIlpg, Y ginIpe|U, lgin, Ipg, £)

> S0 (XY, XY |U, Mgin, g, E). (17)

Next, note that by (11) the transcript Ilg;,IIpg takes
no more than 27wl tR(XTAYID+A2+E yalyes for every
realization (X,Y") ¢ £s. However, when the event £ =
&; holds, h (XTIAYTI) < A% 1 jA,. Tt follows by
Lemma 10 that

Soy(XY, XY |UTlginITp, £)
> S, (XY, XY|U,E) — | el (18)
A8 A — Ay — € —2l0g(1/2n) — 1.
(19)

Also, since {X = X,Y =

condition on &,

S, (XY, XY|U,E)

= 5,(XY, XY|U,¢)

> Humin(Pxyuje | U) — 2log(1/2n) — 1,
where, in the previous inequality, we used the leftover
hash lemma (Lemma 9; see also (5)) by setting X as

(X,Y), Z as U, and V as constant. Furthermore, by
using

Y} holds when we

(20)

Pxyu(z,y,u) _ Pxyuv(zr,y,u)
Pr(€) - a

we can bound Hyin(Pxyye | U) as follows:

PXYU\g(xa Y, u) <

Huyin(Pxyuvie | U) (21)
> min — log LXYUIE (2.4, 1)
T zyu & Py (’LL)
. Pxyuv (z,y,u) (P xyye (z,y,u) > 0)

> min — log

z,Y,u OéPU (U)
= min hp,, (z,9) +loga

w,yefil)
> AN 4 (i —1)A; +1oga. (22)

Thus, on combining (17)-(22), we get
Son(X,Y1E)
> [/\1(1}1)11 + (Z - 1)A1 - >\1(rr?1)1)n - ]Ag + 1Og a] - AQ
— ¢ —4log(1/2n) — |7sin| — 2.
(23)

To get a matching form of the upper bound (16) for
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So,(X,Y|E), note that since?!
— iCPryy (T52,9)
= iy (T AY) = hp sy (2, 9) + ey (2, 7) Ay, 7)),
and since under &£
hp oy (z,y) < )\Sii)n + 1Ay,
B (7)) 2 A + (7 = 1A,

it holds that
¢)

Z Pr({(l’7y,7-) : 7ichy1‘[(x7y7T) < Y= AEil)l’l

Pr ({(2.9) vy (0 Ay) < 7+ Ioga)

— Ay + )\Si)n +(j—1)As + loga} )5)
On choosing

y= A+ AL i - A

- (.] - 1)A3 - IOgOé,

it follows from (16) that

Son(X, YE)

<A+ A A8 (- 1)As — loga
—log (Pr(&x | &) — 3n) . + 2log(1/n)

<A+ A A8 (- 1)As — logal

—log(1 — 3n) + 21og(1/n), (24)

where the equality holds since Pr (£ | £) = 1.
Thus, by (23) and (24), we get
|sin| > A+ 2loga — Ay — Ay — Az — & — 6log(1/n)
+log(1—3n)+2
=A+2log(Pr(Ex) —€ — €tain — 1)
—2log N1 N3 — (A1 + Ay + Ag) — log N
— Tlog(1/n) + log(1 — 3n) + 2,
where the equality holds for £ = —logn + log V5. Note
that N; and A; in the right-side above can be chosen
arbitrarily under the constraint N;A; = A;, i = 1,2, 3;
we set N; = |A;], which implies A; < 2, ¢ =1,2,3.
Substituting this choice of parameters, we get
|Tsin| > A+ 21og(Pr (Ex) — € — tas1 — 1)
—2log A1As —log Ay — Tlog(1/n)
+log(1—3n) —4
> A —2log A1As —log As — 9log(1/n)
+log(1 —3n) — 4,

where the final inequality holds for every A such that

21For clarity, we display the dependence of each information density
on the underlying distribution in the remainder of this section.


Shun
Highlight

Shun
Highlight

Shun
Highlight

Shun
Highlight

Shun
Highlight

Shun
Highlight

Shun
Highlight


Pr(€\) > € + etai1 + 2n; Theorem 13 follows upon
maximizing the right side-over all such .

VI. SIMULATION PROTOCOL AND THE UPPER
BOUND

In this section, we formally present an e-simulation
of a given interactive protocol 7w with the maximum
number of rounds 7y,x < 00. Our simulation protocol
simulates the given protocol 7 round-by-round, starting
from II; to IL,.. Simulation of each round consists of
two subroutines: Interactive Slepian-Wolf compression
and message reduction by public randomness.

The first subroutine uses an interactive version of the
classic Slepian-Wolf compression [46] (see [35] for a
single-shot version) for sending X to an observer of
Y. The standard (noninteractive) Slepian-Wolf coding
entails hashing X to [ values and sending the hash values
to the observer of Y. The number of hash values [ is
chosen to take into account the worst-case performance
of the protocol. However, we are not interested in the
worst-case performance of each round, but of the overall
multiround protocol. As such, we seek to compress X
using the least possible instantaneous rate. To that end,
we increase the number of hash values gradually, A at
a time, until the receiver decodes X and sends back an
ACK. We apply this subroutine to each round i, say ¢
odd, with II; in the role of X and (Y,II;....,1I;_1) in
the role of Y. Similar interactive Slepian-Wolf compres-
sion schemes have been considered earlier in different
contexts (cf. [17], [39], [54], [25], [50]).

The second subroutine reduces the number of bits
communicated in the first by realizing a portion of
the required communication by the shared public ran-
domness U. Specifically, instead of transmitting hash
values of II;, we transmit hash values of a random
variable IT; generated in such a manner that some of
its corresponding hash bits can be extracted from U and
the overall joint distributions do not change by much.
Since U is independent of (X, Y), the number & of hash
bits that can be realized using public randomness is the
maximum number of random hash bits of II; that can
be made almost independent of (X,Y’), a good bound
for which is given by the leftover hash lemma. The
overall simulation protocol for II; now communicates
I — k instead of [ bits. A similar technique for message
reduction appears in a different context in [42], [36],
[56].

The overall performance of the protocol above is still
suboptimal because the saving of k bits is limited by the
worst-case performance. To remedy this shortcoming, we
once again take recourse to spectrum slicing to ensure
that our saving k is close to the best possible for each
realization (IT, X,Y").
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Note that our protocol above is closely related to
that proposed in [9]. However, the form here makes it
amenable to information theoretic techniques such as
spectrum slicing, which leads to tighter bounds than
those established in [9].

For clarity, we build the simulation protocol in steps.

A. Sending X using one-sided communication

We start with the well-known Slepian-Wolf compres-
sion problem [46] where Party 1 wants to transmit X
itself to Party 2 using as few bits as possible. This
corresponds to simulating the deterministic protocol 11 =
II; = X. See Remark 1 in Section II for a discussion
on simulation of deterministic protocols.

For encoder, we use a hash function that is randomly
chosen from a 2-universal hash family F;(X’) of map-
pings with [-bits output. The parameter [ will correspond
to the number of bits transmitted. The actual choice of
! depends on the allowed probability of error €, and can
be chosen using Lemma 17 below. For the decoder, we
use a slight modification of the standard joint typical
decoder [14], [22]. Let the typical set 7]:X‘Y be given
by

Toxyy ={(@.9) s hey (2ly) <l—v}  (25)

for a slack parameter v > 0. The formal description of
the protocol is given in Protocol 1.

Protocol 1: Slepian-Wolf compression

Input: Observations X and Y, uniform public
randomness Upash, and a parameter [

Output: Estimate X of X at party 2
Both parties use Upash to select f from F(X)
Party 1 sends Igm 1 = f(X)
if Party 2 finds a unique x € 7'pXH, with hash
value f(x) = Igm,1 then

‘ set X =x
else

| protocol declares an error

The following result is from [35], [22, Lemma 7.2.1]
(see, also, [32]).

Lemma 17 (Performance of Protocol 1). For every
v > 0, Protocol 1 satisfies

Pr(X # %) <Pxy (Té,, ) +27.

Essentially, the result above says that Party 1 can
send X to Party 2 with probability of error less
than ¢ using roughly as many bits as the e-tail of
hp ., (X[Y), namely the infimum over [ such that
Pxy (hpy,, (X]Y) > ) is less than e.



In fact, the use of the typical set in (25) is not crucial
in Protocol 1 and its performance analysis: For a given
measure Qxy, we can define another typical set 7q,,
by replacing hp ., (z|y) with hqy , (z|y) in (25) even
though the underlying distribution of (X,Y) is Pxy.
Then, the error probability is bounded as

Pr(X #X) <Pxy (75, ) +27,

which implies that X can be sent by using roughly as
many bits as the e-tail of hqy,, (X|Y) under Pxy. This
modification allows us to choose the free parameter Q xy
as per our convenience and simplifies our performance
analysis of the more involved protocols in the following
sections.

B. Sending X using interactive communication

Protocol 1 aims at minimizing the worst-case commu-
nication length over all realization of (X,Y’). However,
our goal here is to simulate a multiround interactive
protocol, and we need not account for the worst-case
communication length in each round. Instead, we shall
optimize the worst-case communication length for the
combined interactive protocol. The protocol below is a
modification of Protocol 1 and uses roughly A (X|Y) bits
for transmitting X instead of its e-tail.

The new protocol proceeds as the previous one but
relies on spectrum-slicing to adapt the length of commu-
nication to the specific realization of (X, Y"): It increases
the size of the hash output gradually, starting with
A1 = Amin and increasing the size A-bits at a time
until either Party 2 decodes X or Ay .x bits have been
sent. After each transmission, Party 2 sends either ACK
or NACK feedback signal. The protocol stops when
an ACK symbol is received or an error is declared.
Note that the protocol of this section is essentially the
same as the one in [50]. However, instead of executing
the protocol for the original input, we apply it to the
input generated by an appropriately chosen conditional
distribution, which in turn is analyzed by choosing the
free parameter Qxy appropriately.

Specifically, fix an auxiliary distribution Qxy. For

min - ymax Aqyy > 0 with )\mi"‘y > Amin et

Qx vy’ "Qx |y’ Qx |y’
Jmax min
NQ _ Qx |y Qx|y
x AQX\Y
and
(1) _ i : :
)\C;X|Y —)\gf‘y +(171)AQX‘Y, 1 SZSNQX“,.
Further, let
0 def
Tony @) | haxy (2ly) = NG,

or hqyy (zly) < A\min },

Qxpy f1 (26)
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and for 1 < i < Nwa’ let ’TC(;Q‘Y denote the ith slice
of the spectrum given by

T, = {@w) A5, < hayy (@ly)

(2)
< /\Qx\y + AQX\Y}'

(0) c : :
Notc.e that TQXJY corresponds to Twa in the previous
section and will be treated as an error event.

Protocol 2: Interactive Slepian-Wolf compression

Input: Observations X and Y with distribution
P xv, uniform public randomness Upash,
auxiliary distribution Qxy, and parameters
v, /\8;?“,, AQX\Y’ NQX\Y’ and [
Output: Estimate X of X at party 2
Both parties use Upash to select fi from Fp(X)
Party 1 sends Igm 1 = f1(X)
if Party 2 finds a unique x such that (z,y) € Té
with hash value f1(z) = Ilgm,1 then
set X ==z
send back Ilsm 2 = ACK

1)

X|Y

else
if More than one such x found then
| protocol declares an error and terminates

else
| send back Ilgm 2 = NACK

while 2 <i < Nq,, and party 2 did not send an
ACK do
Both parties use Up,sh to select f; from
Fiayy (X), independent of f1, ..., fi_1
Party 1 sends Igm 2,—1 = fi(X)'
if Party 2 finds a unique x € %g‘y with hash
value fj(x) = Igm2j—1, V1 < j <1 then
set X =x
send back ILgm 2; = ACK
else
if More than one such x found then

| protocol declares an error and terminates
else

| send back Ilgim,2; = NACK

| Reseti—i+1

if No X found at party 2 then
| protocol declares an error and terminates

Our protocol is described in Protocol 2. For every
(ac,y.) € 732‘),, 1 <i < Nqyys Fhe following lemma
provides a bound for the probability of error of our
protocol.

Lemma 18 (Performance of Protocol 2). For (z,y) €
'Tcgiw, 1 < i < Nqy,y, denoting by X = X(z,y)
the estimate of x at Party 2 at the end of the protocol



(with the convention that X=0 if an error is declared),
Protocol 2 sends at most (I + (i —1)Aqy . +1) bits and
has probability of error bounded above as follows:

)\min

< 2 xy Fhax Tl

Pr(X#x|X:a:,Y=y>

Proof: Since (z,y) € Tég‘y, an error occurs if
there exists a & # x such that (Z,y) € Té]x)\y
eim 2k—1 = for—1(&) for 1 < k < j for some j < i.
Therefore, the probability of error is bounded above as

and

Pr(X;é:HX:a:,Y:y)

< Z ZPY (for—1(z) = for—1(2), VI <k < j) x

Jj=1z#x

1 ((i,y) € 7éjx)‘y)

: 1 X ()
= Z Z IT(G-DhAqy y 1 ((ffay) € TQX|Y>
J=1ita 2 '

1
= Z 2l+(j_1)AQX\Y

j=1

{g:« | (&,y) € Tcgggly}\

)\min TA 1
197\Q x|y
< 427 %Xy | ,

where the first inequality follows from the union bound,
the second inequality follows from the property of 2-
universal hash family, and the third inequality follows
from the fact that

] (2,y) € T

)\(J) +A

Q Q
QXIY}| <25 .
Note that the protocol sends [ bits in the first trans-
mission, and Aq,,, bits and 1-bit feedback in ev-
ery subsequent transmission. Therefore, no more than

(I+ (i —1)Aqy,, + 1) bits are sent. [ |

Corollary 19. Protocol 2 with | = N5+ Aqy,, +7
sends at most (hqy ., (X|Y) + Aqyy +7 + Noxy)
bits when the observations are®> (X,Y) ¢ Té(l)‘y, and
has probability of error less than

Pr(X#X) <Pr((X,Y) €78 ) + Naw, 27

C. Simulation of 11y using interactive communication

We now proceed to simulate the first round of our
given interactive protocol . Note that using Protocol 2,
we can send II; using roughly A(II;|Y) bits. This
protocol uses public randomness Uy,gn Only to choose
hash functions, which is convenient for our probability
of error analysis, and can be easily derandomized. We
now present a scheme which uses another independent

2When hq x| (X]Y) < )\Si;ly, Protocol 2 may transmit more
than (th‘Y (X)Y) + Aqyy +7+ NQX\Y) bits.
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portion of public randomness Uy, to reduce the rate
of the communication further. However, the scheme
will only allow the parties to simulate 1I; (rather than
recover it with small probability of error) and cannot be
derandomized.

Specifically, our next protocol uses X and public
coin U = (Unhash, Usim) to simulate II; in such a
manner that Ug,, can be treated, in effect, as a portion
of the communication used in Protocol 2. Since this
portion is extracted from shared public randomness, it
need not be communicated, which reduces the overall
communication requirement. Note that since Usy, is
independent of (X,Y), this portion of communication
must as well be almost independent of (X,Y’). The
existence of such a portion can be guaranteed by noting
that the communication used in Protocol 2 is simply a
random hash of IT; drawn from a 2-universal family,
and therefore, its appropriately small portion can have
the desired independence property by the leftover hash
lemma. In fact, since the Markov condition II; e X e Y
holds, it suffices to guarantee the independence of X and
I1; instead of (X,Y") and II;.

Protocol 3: Simulation of II;
Input: Observations X and Y with distribution
P xy, uniform public randomness
U = (Unash, Usim), auxiliary distribution
Qm,y and parameters ~, Ag;‘ll‘y, AQu, ys
Nqy,y and k
Output: Estimates 1I; » and II;y of II;
Two parties share k£ random bits Uy, and an f
chosen from Fy (supp(Ily)) using Upash
Party 1locally generates a sample II; y using
P, xran) C1X, Usim)
Parties use Protocol 2 with auxiliary distribution
Qm,y, and paramete'rs v, Sgllly, AQp, 1y
Nqy, |y and [ = Gy T Aqy,y +7 to send
[Ty x to Party 2 by treating Us, as the first k bits
of communication obtained via the hash function f

Our simulation protocol is described in Protocol 3.
Let the quantities such as Ag;‘ily,Ain‘Y., and NQI:Ill\Y
be defined analogously to the corresponding quantities
in Section VI-B with II; replacing X. The following
lemma provides a bound on the simulation error for

Protocol 3.

Lemma 20 (Performance of Protocol 3). Protocol 3
sends at most

(hin\Y(H1X|Y) + AQHI\Y + NQHI\Y +7 - k)+



bits when (111 x, and has simulation error

(0)
) ¢ Qmy v’
dyar (P11, 2y xv, P, xv)
0 _
<Pr ((Hl, Y) e Tén) |y) + Ny, 1y 2

4 1\/2k_Hmin(PH1X [Qx)
2

for any auxiliary distribution Qx on X.

Proof: Consider the following simple protocol for
simulating 1I; at Party 2:
1) Party 1 generates a sample II; using Pry, x (-] X).
2) Both parties use Protocol 2 with auxiliary distri-
bution Qr,y, and parameters -, )\m‘“ Ly Ainly,
Ny, y»and | = )\811711 v +AQH1\Y +7y to generate
an estimate II; of II; at Party 2.
In this protocol, s = )\glijnl‘y + NQn1|yAQn1w +
bits of hash values will be sent for the worst (II1,Y").
We divide these [, hash values into two parts, the fist
k bits and the last l,,s — k bits; let f and f’, respectively,
denote the hash function producing the first and the
second parts. Protocol 3 replaces, in effect, f with shared
randomness Usj, for an appropriately chosen value of k.
Note that the joint distribution of the random variables
involved in the simple protocol above satisfies>

P prmym, xv (0 v, y)
= Pya1)x (v, )P, x s () (712, 0) P prany ya, (0]7)

PY\X(ylm)Pﬁl\f(nl)f/(nl)nlxy(ﬂva UI7 T,Z, y)

(27)
Since
dvar (P, Q) = Q({v: Q (v) =2 P (v)})
—P{v:Qv) =P (v)})
and

{(m,m/, 7,7, 2,y) :
P paomm xy (m,m', 7,7, 2,y)
z Pf(nl)f'(nl)nlﬁlxy (m,m’,7,7,2,y)}
={(m,m', 7,7, z,y) : T =7},
we have
dvar (Pf( L) f! (Hl)Hll'IlXY’Pf(Hl)f ()T, Ty XY)
= Pr (H ” Hl)
((

<Pr(, ) e 78 )+ Nag,y2' @28)

where the inequality is by Corollary 19.
On the other hand, the joint distribution of random

23When the protocol terminates before Nin ‘yth round, a part of
(f(I1y), f/(111)) may not be sent.
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variables involved in Protocol 3 can be factorized as

PUlmf (H1X)H1XH13}XY(U7ula’rv%vxay)
= Pugn (WP x (2)Pr, x gy (7], W)P g1, iy (0] 7)
PY|X(y|33)Pﬁ1\f(nl)f/(nl)nlxy(ﬂ%UlyTal’ay)-
(29)

Therefore, the simulation error for Protocol 3 is bounded
as
dvar (P11, 21y xv, Py xvy)

< dyar (Puy (11 Ty XY P () (1)1, X )
< duar (PUsimf’(HﬂHwHwXY’ P.f<H1>.f'<H1>n1ﬁ1XY)

+ dyar (Pf(nl)f'(nl)nlﬁlxy’ Pf(Hl)f’(Hl)le[lXY)
= dyar (Pu,, Px, Py x)

v (P g, ot v Prcn v )
< dyar (PuyPx, Prnx) + Pr ((Hh Y)e Té?ﬂy)

+ NQHHYQMY,

where the first inequality is by the monotonicity of
dyar (-, ), the second inequality is by the triangular
inequality, the equality is by the fact that replacing
Py, Px with Pyp,)x is the only difference between
the factorizations in (29) and (27), and the final inequal-
ity is by (28). The desired bound on simulation error for
Protocol 3 follows by using Lemma 9 to get

1
dyar (PUsimPX7 Pf(Hl)X) < 5 \/QkiHmi“(Pnlx 1Qx)

Since Protocol 3 uses shared randomness Us;,, instead
of sending f(II;), it communicates k fewer bits in com-
parison with the simple protocol above, which completes
the proof. [ ]

D. Improved simulation of 11,

In Protocol 3 we were able to reduce the communi-
cation by roughly Hp,in(Pr, x|Qx) bits by simulating
a II; such that if we use Protocol 2 for sending II;
to Party 2, a portion of the required communication
can be treated as shared public randomness. However,
this is the worst-case reduction in communication we
can obtain, and a higher gain is possible for specific
realizations. In this section, we slice the spectrum of
hpy  x (I11]X) to obtain an instantaneous reduction of
roughly hpnllx(H1|X) bits.

Denote by J a random variable which takes the
value j € {0,1,...,Np, } if (II;,X) € TP(; .
In our modified protocol, Party 1 first samples J and
sends it to Party 2. Then, they proceed with Proto-
col 3 for Pr, xy|s—; by selecting k to be less than

Hpin (P, x|s=;|Qx) for an appropriately chosen Qx.



Let J; be the set of ”"good” indices j > 0 with

1
PJ (j) Z 5) 5
NPnl\x
it holds that
1
P (ng) < Pr ((Hl, )67},H \X)+Np .
| X

Note that for j € Jg, with Qx = Px, we have

Hnlin(PHIX\J=j|PX)
Pu,x17 (7, 217)

= min—log =5 70
= min — log P x (rle)
@ P ()

> )\g;n‘x +(j— 1)APn1\x - 210ngH1‘X.

Protocol 4: Improved simulation of IIy

Input: Observations X and Y with distribution
P xy, uniform public randomness

U = (Uhash, Usim ), and parameters A

min

) Pryv?
APHUY’ NPHHY’ )\glliri\x’ APHHX’ NPHNX’
and v

Output: Estimates II; » and II;y of II;

Party lgenerates J ~ P ;x(-|X), and sends it to

Party 2.

if J=j ¢ J, then

Parties use Protocol 3 with auxiliary

distribution Pry,y, parameters +, Amin

Py v?
Apn ly? an Iy and k =

g;[n‘X_F( )Apnl\x 210ngH1‘X—2'y+2
to simulate IT; x and II;y for the distribution
P, xvii=j
else

| protocol declares an error and terminates

Our modified simulation protocol is described in Pro-
tocol 4. The following lemma provides a bound on the
simulation error.

Lemma 21 (Performance of Protocol 4). Protocol 4
sends at most

(hpnly(H1X|Y) —hpy, x (x| X) + Ney |y
+ SIOngnl\X + APHHY + APHNX + 3’}/)
+

bits when (11 x,Y) ¢ TP(SI) > and has simulation error
1

dyar (P, 11y xy, Py, xv)

<Pr (M) e ) 4P () e 7 )

Py

20

1

+ (anl‘y + 1) 277 +

P, x

Proof: First, we have

dvar (P11, 211y xv, Py xv)

< dyar (P, 11y xv s, Poym xy )

_ZPJ
<y e

dvar (Priyatiyyxv]J=j> Priyin, xv|s=;)

dvar (Priy v 11,9 xv =5 Priym, x| i=;)

Jejg
+Py (F)
ZPJ dyar innwxyu 5 Pmmxy = _7)
J€Tg
+Pr (1, X) e T )+ :
r }
1 Pm, 1 x NP]‘II\X

Then, we apply Lemma 20 with Qx = Px for each
j € Jg, and get

dvar (Priy 21119 xv =+ P L XY | 7=5)
< Pr ((Hl,Y) (0) | J*]) JrANPnl\Y

Pn %
+ 1\/2k*Hmin(PH1X\J:j|PX)
2

<Pr(m,y)e Ty 17 =)

+ (Nog, e +1) 277

Thus, we have the desired bound on simulation error for
our choice of k.

Next, we prove the claimed bound on the number of
bits sent by the protocol. By Lemma 20, the fact that J
can be sent by using at most log Npy;, x +1 bits and the
choice of k in Protocol 4, for J = j the protocol above
communicates at most

han, vy halY) + Aqy, vy + Non, v +7
+1ongH1‘X +2—k

< hauy iy (M lY) = AB® -~ (j— DAp,

+ Ain\y + Ninly + 3log anl‘x + 37.
< hqy, y hx|Y) = hpy o (TLix[X) + Apy

+ Ain\y + NQH1IY + 3log NPnux + 3,
where the previous inequality holds since for II; » gen-
erated by Py, x rar,)s (| X, Usim, J)
+JApy 1y = bey | (x| X),

for each j € J,. We have the claimed bound by setting
Qm, |y = P,y =

min
P, x

E. Simulation of 11

We are now in a position to describe our complete
simulation protocol. Consider an interactive protocol m



with maximum number of rounds 7. = d < co. We
simply apply Protocol 4 for each round II, of II. Our
overall simulation protocol is described in Protocol 5. In
each round we use Protocol 4 assuming that the simu-
lation up to the previous round has succeeded, where,
for the rounds with even numbers, we use Protocol 4 by
interchanging the role of Party 1 and Party 2.

Protocol 5: Simulation of II
Input: Observations X and Y with distribution
P xvy, uniform public randomness

U= (Uthasthtsm ItZl,...,d), and
mln
parameters AP =1 APonnt—l’
mm
NPHHXW 1 P yme-1? Apnf\ynt 12
fort=1,...,d and 7.

Output: Egtl‘r}rfllelltes IIx and Hy of II
while Total communication is less than 1.5 bits,
and simulation is not complete do
Party 1 and Party 2, respectively, use estimates
I " and 115" for IT*!
Parties use Protocol 4 for simulating
PH?(XHt—l)(YHt—l) with parameters

Ig)l;[n‘xnt_l’ AP NP

min
Ap . Ap 1o
1'[ |Y 1T Iy | YII

L Updatet—>t+1

if Total communication exceeds 1.5 bits then
L Declare an error

M| xmt—1’ Ty | xmt—1"

annynf*l and v ;

The following lemma provides a bound on the simu-
lation error.

Lemma 22 (Performance of Protocol 5). Protocol 5
sends at most .5 bits, and has simulation error

dyar (P11, xy, Prnxy)

d
< Pr (ic(H; X,Y)+ ) 6 > lmax>

t=1

+ |:4PI'(Ht, (v, h) GTH Iy mt— 1)

t=1

+apr (11, (v, e 7O )
+3 (ant‘ym_l + Ney e T 2) 2=
P S }
P, xmt—1 NPnHynt—l
where
ant‘ynt_l + 3log ant‘xnt_l + Apnt‘ynt_l
5, = +Apnt\xnf*1 + 3, odd t,
ant\xntfl +3log ant\yntfl + APnt\xntfl
+Apnt\ynt—1 + 3, even t.

(30)
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Proof: Consider a virtual protocol which does
not terminate even if the total number of bits exceed
lmax. Denote the output of this protocol by My =
(H1X7 .. Hd/y) and Hy = (Hly, .. de) We have

dvar (Pri,my, xv, Pimxy)

< dyar (annyXY7 Pl:[Xl:[yXY)
+ dvar (P11, xv» Primxy)

< Pr ((ILy, y) # (ILy, IIy))
+ dvar (Priyfiy xy, Prmxy ) - (3D

First, we bound the second term of (31). By using
triangular inequality repeatedly and by using Lemma 21,
we have
dyar (Pﬁxﬁyxyy Prnxy)
< dyar (Pﬁlr\’ﬁly'"ﬁ(d—l)Xﬁ(d—l)’yﬁdé\’ﬁdl}xy’
Pnlnl"'H(d_1)n(d_1)ﬁdxﬁdyxy)
+ dyar (Pnlnl---H(d,l)n(d,l)ﬁdxﬁdyxw
PH1H1'--H(d_l)l_[(d_l)HdeXY)
= dyar (Pﬁlxﬁw"'ﬁ<d71)xﬁ<d71)yXY’
PHIHI"'H(d—l)H(d—l)XY)
+ dyar (P, o iy (xTT4- 1) (yT14- 1),

Prim, (x1ma-1)(via-1))

yar (P, fpy (XTI-1) (Y115

I
~+

HM&

-

P, (xmme-1)(vie-1))

{ (Ht, (v, 1)) Eﬁntlynf 1)

IN

:0d
+Pr((, () e )

| xmt—1

—
NPH | xIt—1

{Pr( (I, (v, I 1)) € 7 )

r[ lyTit—1

o

+ (ant\Yr[tfl + 1) 277 +

+>
t:even

+Pr ((Ht, (X, 101y e 70 )

M| xmt—1

1
-
+ (o, s +1) 277+ NPntYHt—1:|

<Z[Pr(l’[t, v, 1)) e 740 )

n,\ynt 1
t—1
+Pr (I, (x )y e 7Y )

+ (ant\ynffl + ant\xntfl + 2)



TR S —
Np

(32)

Np

My xmt—1 g |yrt—1

Denote

I(X,Y, 11y, 1Iy)

def
= hp

t:odd

(MY, T )

g |yrt—1

Pryixme-1 (ﬁtX|Xa ﬁﬁv_l)
+> hey i (el X, )

t:even

- hPHt‘ynt—l (ﬁty‘yaﬁfj;l)

Since (IIy,IIy) coincides with (IIy,IIy) when the
accumulated message length of the protocol generat-
ing (IIx,IIy) does not exceed Ilna.y, and since the
message length of each round is bounded by each
term of I(X,Y,y,IIy) plus 6; by Lemma 21 unless
(Mo, (VI ) € Tpp) -, or (T, (XTI 1) €
7—(0)

Ppy, -1 we have

Pr ((Iy, Iy) # (M, y))

d
S Pr (l(X, Y, ﬁx,ﬁy) + 261‘ > lmax)

t=1

n Pr( U (e, (V.15 1)) € 0

I |yIt—1
t:odd

or U (ﬁtyv (X, ﬁfx_l)) € ﬁzixntl) (33)

t:even

Since

Pr((X,Y,Ily,I0y) € &)
S Pr ((X3KH7H) S 5) + dvar (PﬁxﬁyXYaPHHXY)

for any event &, it follows from (33) that
Pr ((Mx, Iy) # (I, My))

d
<Pr (l(X, YILI) + ) 6 > lmax>
t=1

+ Pr( | (@, (v, 1)) e 750

g |ymt—1
t:odd

or |J (I, (X,1171)) e 70 )

I | x1It—1
t:even

+ dear (PﬁxﬁyXY7 PHHXY)

d
S Pr (l(X, Y, H,H) + Z 51‘, > lmax)
t=1
d

n ; [Pr ((Ht, (v, 1t 1) e T )

Ty |ymt—1
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_ 0
+Pr (I (X, e 7Y ) }
+ 2dvar (Priyiiyxy» Primxy) -

Thus, by combining this bound with (31) and (32), and
by noting

I(X,Y,ILTI) = ic(IL; X, Y),

we have the desired bound on simulation error. [ ]
We have proved the following general upper bound.

Theorem 23. Consider a protocol 7 with the maximum
number of rounds T, < 00 and 0 < n < 1. Then,

D (m) <inf {\: Pr(ic(IL X,Y) > \) <e—€'} + X,
where, with &; given by (30), ' = ;" §; and

e = i {4Pr ((Ht, (v, 1)) e 740 )
t=1

I, |ymt—1

+ 4P ((m, () e i) )

My xmt—1
+3 (NPHt\YHt71 + Np
3 3 ]

n 2) 9=

| xmt—1

+ % +

My xmt—1 Pnt\yntfl

VII. PROOFS OF RESULTS OF SECTION III

We now apply the general lower bound in Theorem 13
and the upper bound in Theorem 23 to obtain the proofs
of Theorem 1, 2, 3, 5, and 7. All proofs rely on carefully
choosing the slice-sizes in the general lower and upper
bounds.

A. Proofs of Theorem I and 2
We use the following simple observation to bound the

minimum length of an essential spectrum.

Lemma 24. For 0 < € < 1 and random variables
X and Y, the conditional entropy density h(x|y) =
—logPxy (z|y) satisfies

Pr (0 < h(X]Y) < log/:l) >1—e.
Proof: Since h(X|Y) is nonnegative with probabil-
ity 1, it suffices to show that
Pr (h(X|Y) > log P:) <e.
Indeed,
Pr <h(X|Y) > log |X>

£
= ZPY (y) Z
x|

Y z:h(z|y)>log =+

€

Pxy (z|y)



Ed
9~ log -

Z [X]

z:h(z|y)>log *—

<) Py ()
Yy i -

= €.

—\@ _\G) _ g

min min

Proof of Theorem 1. Fix /\I(ii)n
and

3

AL = log|¥]|] +1log
3

A2 =log || +log =,

) 6 6
)\Er‘fix = log|X| + 1ogﬁ + log|Y| + log H

Then, by Lemma 24, the events &;,&>,&3 in (6) each
have probability less than 7/3 and (6) holds with 4451 =
7. Thus, the conditions of Theorem 13 hold and the
claimed bound follows since

210gA1A3 + logAg
6
<5log (log|X|J}| + 2log 77>
6
< 5+ 5loglog |X|| Y| + 5log2log —,
n

where the last inequality uses log(a + b) < 1+ loga +
log b. |

Proof of Theorem 2. For 1 < t < rpax, fix
min — \min =0
P, xmt—1 Pr,jymt—1 ’

def 11 7max
max — Amax — A — T 10
Pnt\xnffl Pnt\yntfl | | +log n ’
j— max — max
NPHt\YHt’l o :/ Apnt\yntfl’ NPHHXH"*I B /\Pnt\xnt—l
— max p—
for odd ¢ and oyt = )‘Pnt\ynt—l’ ant‘ynhl =
Bax for even ¢, and
Mg |ymt—1

1 1 Tmax

v=1+1logA +log
Then, by Lemma 24,
_ 0
Pr ((Ht7 (Y7 I’ 1)) € ,TP(Hi\YHt*1)

and
Pr ((Ht, (x, 111y € 7 )

g x1t—1

are bounded above by 7/(11 rpyayx). Consequently, the
parameters ¢’ and X of Theorem 23 are bounded above
by

€’< +r 67774_3 i‘i‘l
=N Fmax | 550 0 JA A

23

and

1]- max
N < Prax - (2\/K+610gA+4+310g7;7)

11 max
<127 max VA + 3log —— 0

The claimed bound follows by Theorem 23. ]

B. Proof of Theorem 3

We start with the upper bound. Note that, for IID
random variables (IT", X" Y'™), the Chebyshev inequal-
ity implies that the spectrums of A(II}|Z", (II~1)")
for®* Z = X orY have width O(y/n). Therefore,
the parameters As and Ns that appear in the fudge
parameters can be chosen as O(n'/4). More specifically,
for every v > 0, there exists a constant® ¢ > 0 such that
with

Pran |z (1t 1yn

= nH(II;|Z, 1" 1) — ¢y/n,
=nH(IL|Z T Y) + cy/n,

max
P -
mn|zn(mt—1n

the following bound holds:

<.

(34)

Pr ((H;L, (z", (1)) e T

n:{rlzr‘zn(ntfl)n

Let T denote the third central moment of the random
variable ic(Il; X,Y"). For

T3
A = nIC(m) + /nV(m)Q (e —9dv — W) ,

mp|znt-1yn = NPH'{len(Ht—l)n =7 =

V2en'4, and Lpax = A + Zle d; in Theorem 23,
we get a protocol of length [, and satisfying

choosing Ap

dvar (PHK‘HSL;XnYn ; PHanXnYn)

<Pr (Z ic(Il; X;,Y;) > An> + 9dv
i=1
for sufficiently large n. By its definition given in (30),
8¢ = O(n'/*) for the choice of parameters above. Thus,
the Berry-Esséen theorem (cf. [18]) and the observa-
tion above gives a protocol of length [,y attaining e-
simulation. Therefore, using the Taylor approximation
of Q(-) yields the achievability of the claimed protocol
length.

24We use this notation throughout this section for brevity.

25 Although the constant depends on random variables appearing
in each round, since the number of rounds is bounded, we take the
maximum constant so that (34) holds for every t.



For the lower bound, we ﬁx sufficiently small con-
stant & > 0, and we set A\ o = n(HX,Y) —9),
Mie = n(H(X.Y) +9) Af?n = n(H(X|Y,I) - 9).
AZL = n(H(X|Y, 1) 4+ 6), AC), = n(H(XTIAYTE) -
J), )\fgix = n(H(XIIAYTII)+4), respectively. Then, by
the Chernoff bound the tail probability €y,37 in (6) can be
seen to be bounded above by = for some constant ¢ > 0.
We also set n = % For these choices of parameters, we
note that the fudge parameter is \' = O(logn). Thus,
by setting

A=A\, =nIC(m)
c 3
+/nv(m)Q ! <€+ ;;2 + 2 ?;/Q\f)
)+ /nv(m)Q~!

)+ O(logn),
where the final equality is by the Tailor approximation,
an application of the Berry-Esséen theorem to the bound
in (7) gives the desired lower bound on the protocol
length. |

= nIC

C. Proof of Theorem 5

Theorem 13 implies that, for arbitrary A > 0, if a
protocol mgi, is such that

|Tsim| < A — N, (35)
then its simulation error must be larger than
Pr(ic(II"; X™,Y"™) > \) — (36)

Set )‘m = ( ( ) 5) Amax = TL(H(X, Y) =+ (S),
mm = ( (XIY H) - 6) )\I(ngx = n( (X‘YY, H) +
5), A& — pEXxTAYI) - §), A5, =

n(H(XIIAYTII) + §), respectively. By the Chernoff
bound, there exists £; > 0 such that

Etail S 27E'1n.

Furthermore, A; = O(n) for i = 1,2,3. We set n =
27377, It follows that

g <o B 4 o=z (37)
and
1
N < 3" + O(logn). (38)
Finally, upon setting
0
A = nIC(m) — 3 (39)

and applying the Chernoff bound once more, we obtain
a constant F5 > 0 such that

Pr(ic (IT"; X", Y"™) > \) > 1 — 27 F2n,

(40)
The result follows upon combining (35)-(40). |
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D. Proof sketch of Theorem 7

Since the proof follows a standard argument of the
information-spectrum approach [22], we omit some of
the basic steps to avoid cumbersome notations. The main
idea is to choose the width of the essential spectrums
of the involved random variables to be O(n), which
in turn renders the fudge parameter \' to be O(y/n)
in the achievability part and O(logn) in the converse
part. Then, the leading asymptotic term, which is ©(n),
corresponds to the e, -tail of the information complexity
density, where ¢,, goes to 0 as n tends to infinity; the
quantity IC(7) corresponds to the constant of this ©(n)
term.

Specifically, for a sequence of protocols 7w =
{mn}5%, and a sequence of observations (X,Y) =
{(Xn, Yo) 302y, let

H(IL|Z,11'7)
= sup {a : nhn;oPr ( (M, ¢| Z, T < a) = O} ,
(41)
H(IL|Z, 11" )
_: S t—1 _
= inf {a : nhﬁn;o Pr (h(I, | 2,115 1) > ) = O} ,

(42)

where Z = Xor Y, II; = {II,,;}5°, and I, ! =
{ITt=112° | are sequences of transcripts of ¢th round and
up to tth rounds, respectively. For the achievability part,
we fix arbitrary small ¢ > 0, and set

)\mh: lzZpntTt =n (ﬂ(ndz,ﬂt’l) _ 5) ,
gdx :n(F(Ht|Z7Ht—1)+5)’

t—1
My, ¢l Zn Ty

= Np == v/26n. Further,

t—1
My, ¢1Zn Ty

d
)+5)+Z5t

= n (TC(m) +6) + O(v/n),

where ¢; is given by (30). Then, by Theorem 23, the
definition of IC(mr), (41), and (42), there exists a simu-
lation protocol of length [, with vanishing simulation
error. Since § > 0 is arbitrary, we have the desired
achievability bound.

For the converse part,

Ap
Hn,t‘ZnH57.71
we set

lpax =N (ﬁ(ﬂ'

we fix arbitrary & >

0, and set ASI)H = n(HX,Y) — 9), AE&QX
n(H(X,Y) +6), A\ = n(H(X|Y, ) - 6), \Oh =
HX[Y,I) + 6), \&) = n(HXIIAYII) - §),

,\ST?;X =n(H
H(X,Y)

= sup{a

(XTIAYTI) + ), respectively, where

oz)zO}7

: lim Pr(h(X,Y,) <

n—oo



H(X,Y)

= inf {a : nl;rglo Pr(h(X,Y,) > a) = 0} )
H(X|Y,II)

= sup {o : Pr (h(X,|Y,IL,) < a) = 0},
H(X[Y,1I)

= inf {« : Pr (h(X,|Y,IL,) > a) =0},
H(XIIAYII)

= sup {a : Pr (h(X,II,AY,II,) < o) = 0},
H(XTIAYII)

= inf {a : Pr (h(X,II,AY,IL,) > a) = 0}.

Then, by definition of the quantities involved, the tail
probability e,37 in (6) converges to 0. Setting n =
(1/n), we note that the fudge parameter is X =
O(logn). Thus, by using the bound in (7) for

A=A, =n(IC(w) +9),

upon letting 6 — 0, we have the desired converse bound.
|

VIII. CONCLUSION

We have proposed a common randomness decompo-
sition based approach (cf. [49]) to derive a lower bound
on communication complexity of protocol simulation by
relating the protocol simulation problem to the secret key
agreement. A key step in our approach is identifying
the amount of common randomness generated through
protocol simulation. Our estimate for the amount of
common randomness does not rely on the structure of the
function to be computed. This is in contrast to most of
the existing lower bounds on communication complexity
for function computation, such as the partition bound
or the discrepancy bound, where the structure of the
computed function plays an important role. In partic-
ular, a comparison of our approach with other existing
approaches for specific functions is not available. An
important future research agenda for us is to incorporate
the structure of functions in our bound; the case of
functions with a small range such as Boolean functions
is of particular interest.

APPENDIX
A. Example Protocol

To illustrate the utility of our lower bound, we con-
sider a deterministic protocol m which takes very few
values most of the time, but with very small probability
it can send many different transcripts. The proposed
protocol can be e-simulated using very few bits of
communication on average. But in the worst-case it
requires as many bits of communication for e-simulation
as needed for data exchange, for all € > 0 small enough.
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Specifically, let X = Y = {1,...,2"} and let 7 be
a deterministic protocol such that the transcript 7(z, y)
for (x,y) is given by

a, if z > 02"y > 627,
b, if x> 82"y <9627,
c, if x < 82"y > 627,
(z,y), ifx<do2™ y <62,

for some small 6 > 0, which will be specified later.
Clearly, this protocol is interactive.

Let (X,Y) be the uniform random variables on X x ).
Then,

7(z,y) =

Pr(II ¢ {a,b,c}) = 6°.

Since
1-6, ifz> 2"y > 62",
— 0, if x > 62",y <4627,
Prx(7(z, y)|lz) = 1-96, ifx <627,y >62m.
L, ifaz<aany <o,

PR
and similarly for Py (7(x, y)|y), we have
ic(r(z,y);z,y)
21og(1/(1 - 4)),
log(1/0) +log(1/(1 = 9)),

log(1/6) +log(1/(1 —9)),
2n,

if x> 82"y > 9§27,
if z > 902"y <627,
if 2 <82™y > 627,
if z <4§2™y <627,

Consider § = %, and € = % Note that for any A < 2n,

Pr(ic(Il; X,Y) > ) > Pr (II¢{a, b, c})
=42
1
T n?
> e,

and
Pr(ic(II; X,Y) > 2n) = 0.

Thus, the e-tail of information complexity density A\, =
sup{A : Pr (ic(I; X,Y) > \) > ¢} is given by

Ae = 2n. (43)

On the other hand, we have

IC(m) = H(II|X) + H(IT|Y)
< 260[hp(8) + logn —log(1/6)] + 2(1 — 8)hy(0)

where hyp(-) is the binary entropy function.

Also, to evaluate the lower bound of Theorem 13,
we bound the fudge parameters in that bound. To that
end, we fiX €431 = 0 and bound the spectrum lengths
A1, Ao, Ag. Since (X,Y) is uniform, h(X,Y) = 2n
and so, A; = 0. Note that with probability 1 the
conditional entropy density h(X|IL,Y) is 0, log(d2™),



or log((1 — d)2™), which implies Ag = O(n). A similar
argument shows that A3 = O(n). Therefore, the fudge
parameter

X = O(log A{AsAs) = O(logn),

which in view of (43) and Theorem 13 gives D, (7) =
Q(2n). [ |

B. Proof of Lemma 10

Lemma. Consider random variables X,Y,7Z and V
taking values in countable sets X, Y, Z, and a finite
set V, respectively. Then, for every 0 < e < 1/2,

$2-(X.Y|ZV) = S.(X,Y|Z) — log |V| — 2log(1/2¢).

Proof. Consider random variables K and K3, with
a common range K’ such that (K, K)) constitutes
an e-secret key for X and Y given eavesdropper’s
observation Z, recoverable using an interactive pro-
tocol 7’. Let Q K4 KLU ZV denote the distribution

1(2)

P{l(r?i)fPH’ZPV‘ Kt K41z, Where P denotes the dis-

unif
tribution
]1 f—
P;(fi)f(kxﬁky) = W’ Vky,ky € K.

Then, by definition of an e-secret key, it holds that

dyar (PK;( K, zv, Qky, K'yn/zv>

= dvar (Prer, w0 2Pv | i K4 0 2,
1(2)
PunifPH/ZPV|K;(K£}H’Z)
"(2)
= dyar (PK%K&H’Za PunifPH/Z)

<e. (44)

Note that Hin(Qxy vz | 1I'Z) > log |K'|. Therefore,
by Lemma 9 there exists a function Ky = K(K%)
taking values in a set K with log|K| > log|K'| —
log |V| — 2log(1/2¢) such that

dvar (Qk 1172V, PunisQrrzv) < €, (45)

where Pni¢ denotes the uniform distribution on the set
K. Upon letting Ky = K(K3)) and defining P

unif
analogously to P;(fi)f with C in place of X', we have

dyar (PKXKyH’ZVa Pl(li)ifpnfzv)

< dyar (QKXKyH’ZV7P1S121)ifPH’ZV) +e

= dyar (Qxr2v, PunisPrrzv) + ¢
< 2¢,

where the first inequality is by (44) and the second
by (45), and the equality is by the definition of Q.
Therefore, (Kx,Ky) constitutes a 2e-secret key of
length log |[K'| —log |V|—21log(1/2¢) for X and Y given
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eavesdropper’s observation (Z,V'). The claimed bound
follows since K’ was an arbitrary secret key for X and
Y given eavesdropper’s observation Z. ]
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