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Abstract—We derive impossibility (converse) bounds for the
efficiency of implementing information theoretically secure obliv-
ious transfer and bit commitment using correlated observations.
Our approach is based on relating these problems to that
of testing if the observations of the parties are conditionally
independent given the adversary’s observation. The resulting
bounds strengthen and improve upon several previously known
results.

I. INTRODUCTION

A folklore heuristic in certain information theory circles [1]
states that information theoretic security is feasible because of
the advantage that the legitimate parties have over the eaves-
dropper owing to the residual correlation in their observations,
when conditioned on eavesdropper’s observation. This simple
heuristic is vindicated partly by the asymptotic results in secret
key (SK) agreement with public communication [17], [2], [6],
[7] which show that no positive rate SK can be generated if the
observations of the legitimate parties are independent given the
observation of the eavesdropper. However, is there a concrete,
more direct realization of this heuristic principle? And does it
extend to the other canonical problems of cryptography such
as secure computing?

In a recent result [29], we provided one such realization
for the SK agreement problem. Specifically, we reduced1

the binary hypothesis testing problem of testing conditional
independence of the observations of legitimate parties given
the eavesdropper’s observation to that of SK agreement – given
a SK agreement protocol, one can derive a test for the checking
if the observations of the legitimate parties are conditionally
independent given the eavesdropper’s observation. This in turn
led to a bound on the length of a SK that can be generated,
which we term the conditional independence testing bound.

In this paper, we show a similar connection between
conditional independence testing and secure computing. In
particular, we reduce the conditional independence testing
problem above to two fundamental primitives in information
theoretically secure computing [36], namely oblivious transfer
(OT) [21], [8] and bit commitment (BC) [5]. This brings
out an explicit connection between the residual correlation
mentioned above and these two secure computing primitives.
Our reduction proof, illustrated in Fig. 1, is divided into two
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1A reduction is a construction of complex protocols from one or more
simpler protocols. Such constructions are ubiquitous in cryptography (cf.
[11]) and form the basis of computational security proofs.
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Fig. 1: Depiction of our reduction arguments.

steps. First, we reduce SK agreement to BC and OT, and then
use the reduction of conditional independence testing to SK
agreement derived in [29]. As a consequence, we get bounds
on the efficiency of implementing these secure computing
primitives from correlated observations.

Our single-shot bounds apply to all discrete random vari-
ables, and they strengthen and improve some previously
known asymptotic bounds. Specifically, it follows from our
bounds that an upper bound of Ahlswede and Csiszár [3]2

on OT capacity holds even when the asymptotic perfect OT
conditions are dropped and a strong converse holds for the BC
capacity established in [33]. To further illustrate the tightness
of our bounds, consider the problem of constructing (string)
BC of length l from OT of length n. As a simple consequence
of our bound, we roughly get (see Example 1 below for details)

l ≤ n+ log(1/(1− ε− δ1 − δ2))

for security parameters ε, δ1, δ2, a marked improvement over
the previously known bound [22, Corollary 2]

l ≤ n+ h(δ1) + h(ε+ δ2)

1− ε− δ1 − δ2
, (1)

where h(·) is the binary entropy.
The rest of the paper is organized as follows. The next

section reviews a basic property of interactive communication,
the SK agreement problem, binary hypothesis testing, and the
conditional independence testing bound, all of which will be
instrumental in our proofs. In the subsequent two sections,
we present impossibility or converse bounds for OT and BC.

2The asymptotic bound in [3] is a special case of a more general asymptotic
bound in [23]. It is not clear if our approach can derive a single-shot version
of the general bound in [23].



We conclude the paper with a brief discussion in Section V.
Due to lack of space, some of the technical proofs have been
omitted and can be found in [30].

II. PRELIMINARIES

We start by reviewing some basic notions and results that
will be instrumental in our proofs. Some of the observations
are new and complete proofs are available in the extended
version of this conference paper [30].

A. Interactive communication

An interactive communication F for two parties consists
of stochastic3 functions F1 = F1(X), F2 = F2(Y, F1),
F3 = F3(X,F1, F2), and so on. We begin by noting a
simple property of interactive communication, namely that
conditionally independent random variables remain so when
conditioned additionally on an interactive communication.

Lemma 1 (Interactive communication property). (cf. [26])
Given QX1X2|Z = QX1|ZQX2|Z and an interactive communi-
cation F, the following holds:

QX1X2|FZ (x1, x2|f, z) = QX1|FZ (x1|f, z)QX2|FZ (x2|f, z) .

B. Secret keys using interactive communication

Two parties, with the first observing the random variable X1

and the second X2, seek to generate a SK using an interactive
public communication F such that the key remains concealed
from an eavesdropper with access to Z and F. To that
end, using the communication F and their local observations,
the first and the second party compute, respectively, random
functions K1 and K2 of (X1,F) and (X2,F), with a common
range K.

Definition 1. Given 0 ≤ ε < 1, the random variables K1,K2

as above, taking values in a common set K, constitute an ε-
secret key (ε-SK) if∥∥∥PK1K2FZ − P

(2)
unif × PFZ

∥∥∥ ≤ ε, (2)

where ‖P −Q‖ = 1
2

∑
x |P(x)−Q(x)| is the total variation

distance and

P
(2)
unif(k1, k2) =

1

|K|
1(k1 = k2).

The maximum length of ε-SK is denoted by Sε(X1, X2|Z)

C. Binary hypothesis testing

In order to state the required upper bound on Sε(X1, X2|Z),
we need a concept from binary hypothesis testing. Consider
a binary hypothesis testing problem with null hypothesis P
and alternative hypothesis Q, where P and Q are distributions
on the same alphabet X . Upon observing a value x ∈ X ,
the observer needs to decide if the value was generated by
the distribution P or the distribution Q. To this end, the
observer applies a stochastic test T, which is a conditional

3Local randomness is assumed to be independent of any other randomness
in the model.

distribution on {0, 1} given an observation x ∈ X . When
x ∈ X is observed, the test T chooses the null hypothesis
with probability T(0|x) and the alternative hypothesis with
probability T (1|x) = 1 − T (0|x). For 0 ≤ ε < 1, denote by
βε(P,Q) the infimum of the probability of error of type II
given that the probability of error of type I is less than ε, i.e.,

βε(P,Q) := inf
T :P[T]≥1−ε

Q[T],

where P[T] =
∑
x P(x)T(0|x) and Q[T] =

∑
xQ(x)T(0|x).

We note two important properties of the quantity βε(P,Q).
1) Data processing inequality. Let W be a stochastic

mapping from X to Y , i.e., for each x ∈ X , W (· | x)
is a distribution on Y . Then,

βε(P,Q) ≤ βε(P ◦W,Q ◦W ), (3)

where (P ◦W )(y) =
∑
x P (x)W (y | x).

2) Stein’s Lemma. (cf. [16, Theorem 3.3]) For every 0 <
ε < 1, we have

lim
n→∞

− 1

n
log βε(P

n,Qn) = D(P‖Q),

where D(P‖Q) is the Kullback-Leibler divergence.

D. The conditional independence testing bound
Our approach for deriving an upper bound entails reducing

secure computing to SK agreement and using the conditional
independence testing upper bound on the maximum length of
an ε-SK, which was derived in [29], [30]. The general upper
bound in [29], [30] is a single-shot upper bound on the SK
length for a multiparty SK agreement problem, derived by
reducing SK agreement to binary hypothesis testing. Here, we
recall a specialization to the two party case.

Theorem 2 (Conditional independence testing bound). [29],
[30] Given 0 ≤ ε < 1, 0 < η < 1 − ε, the following bound
holds:

Sε (X1, X2 | Z) ≤− log βε+η
(
PX1X2Z ,QX1|ZQX2|ZQZ

)
+ 2 log(1/η),

for all joint distributions Q on X1 × X2 × Z that render X1

and X2 conditionally independent given Z.

III. OBLIVIOUS TRANSFER

We present bounds on the efficiency of implementing in-
formation theoretically secure one-of-two OT using correlated
randomness. The first party observes K0 and K1, distributed
uniformly over {0, 1}l, and the second party observes a
random bit B. The random variables K0,K1, and B are mu-
tually independent. Furthermore, party i observes the random
variable Xi, i = 1, 2, where random variables (X1, X2) are
independent jointly of (K0,K1, B). The second party seeks
to compute KB without giving away B to the first party. At
the same time, the first party does not want to give away KB

to the second party.

Definition 2. (Oblivious transfer) An (ε, δ1, δ2)-OT of length
l consists of an interactive communication protocol F and



K̂ = K̂(X2, B,F) such that the following conditions hold4:

P
(
KB 6= K̂

)
≤ ε, (4)∥∥PKBX2BF − PKB

× PX2BF

∥∥ ≤ δ1, (5)

‖PBK0K1X1F − PB × PK0K1X1F‖ ≤ δ2, (6)

where B = 1 ⊕ B. The first condition above denotes the
reliability of OT, while the second and the third conditions
ensure security for party 1 and 2, respectively. Denote by
Oε,δ1,δ2(X1, X2) the largest length l of an (ε, δ1, δ2)-OT.

When the underlying observations X1, X2 consist of n-
length IID sequences Xn

1 , X
n
2 with common distribution

PX1X2
, it is known that Oε,δ1,δ2(X1, X2) may grow linearly

with n (cf. [18], [3]); the largest rate of growth is called the
OT capacity.

Definition 3 (OT capacity). For 0 < ε < 1, the ε-OT capacity
of (X1, X2) is defined as

Cε(X1, X2) = lim
δ1,δ2→0

lim inf
n

1

n
Oε,δ1,δ2(X

n
1 , X

n
2 ),

. The OT capacity is defined as

C(X1, X2) = lim
ε→0

Cε(X1, X2).

The main result of this section is an upper bound on
Oε,δ1,δ2(X1, X2). Consequently, we recover the upper bound
on C(X1, X2) due to Ahlswede and Csiszár derived in [3]. In
fact, we show that the upper bound is “strong” and applies to
Cε(X1, X2) for every 0 < ε < 1.

To state this result, and the result of the next section, we
need the notions of maximum common function and mini-
mum sufficient statistic; their role in bounding the perfor-
mance of secure computing protocols was first highlighted
in [35]. Specifically, for random variables X1, X2, denote
by mcf(X1, X2) the maximum common function of X1 and
X2 [10] (see, also, [27]). Also, denote by mss(X2|X1) the
minimum sufficient statistic for X2 given X1, i.e., the minimal
function g(X1) such that the Markov chain X1—g(X1)—X2

holds. Specifically, mss(X2|X1) is given by the function
resulting from the following equivalence relation on X1 (cf.
[9], [15], [25]):

x1 ∼ x′1 ⇔ PX2|X1
(x2|x1) =PX2|X1

(x2|x′1) ,
for all x2 ∈ X2.

Theorem 3 (Single-shot bound for OT length). For random
variables X1, X2, V0 = mcf(X1, X2) and V1 = mss(X2|X1),
the following inequalities hold:

Oε,δ1,δ2(X1, X2) ≤ − log βη
(
PX1X2V0 ,PX1|V0

PX2|V0
PV0

)
+ 2 log(1/ξ), (7)

Oε,δ1,δ2(X1, X2) ≤ − log βη
(
PV1V1X2

,PV1|X2
PV1|X2

PX2

)
+ 2 log(1/ξ), (8)

4Strictly speaking, OT refers to the problem where the strings K0,K1 and
the bit B are fixed. The randomized version here is sometimes referred as
oblivious key transfer (see [4], [34]) and is equivalent to OT.

for all ξ > 0 with η = ε+ δ1 + 2δ2 + ξ < 1.

Corollary 4 (Strong bound for OT capacity). For 0 < ε < 1,
the ε-OT capacity of (X1, X2) satisfies

Cε(X1, X2) ≤ min{I(X1 ∧X2|V0), H(V1|X2)},

where V0 = mcf(X1, X2) and V1 = mss(X2|X1).

The proof of Theorem 3 entails reducing two SK agreement
problems to OT5. The bound (7) is obtained by recovering KB

as a SK, while (8) is obtained by recovering KB as a SK; we
note these two reductions as separate lemmas below.

Lemma 5 (Reduction 1 of SK agreement to OT). Consider
SK agreement for two parties observing X1 and X2, respec-
tively, with the eavesdropper observing V0 = mcf(X1, X2).
Given an (ε, δ1, δ2)-OT of length l, there exists a protocol for
generating an (ε+ δ1 + 2δ2)-SK of length l. In particular,

Oε,δ1,δ2(X1, X2) ≤ Sε+δ1+2δ2(X1, X2|V0).

Lemma 6 (Reduction 2 of SK agreement to OT). Consider
two party SK agreement where the first party observes X1, the
second party observes (V1, X2) = (mss(X2|X1), X2) and the
eavesdropper observes X2. Given an (ε, δ1, δ2)-OT of length
l, there exists a protocol for generating an (ε+ δ1 + 2δ2)-SK
of length l. In particular,

Oε,δ1,δ2(X1, X2) ≤ Sε+δ1+2δ2(X1, (V1, X2)|X2).

Remarks. (i) Underlying the proof of C(X1, X2) ≤ I(X1 ∧
X2) in [3] was a reduction of SK agreement to OT, which
is extended in our proof of (7). In contrast, the proof of the
bound C(X1, X2) ≤ H(X1|X2) in [3] relied on manipulations
of entropy terms. We give an alternative reduction argument
to prove (8).

(ii) In general, our bounds are stronger than those presented
in [32]. For instance, the latter is loose when the observations
consist of mixtures of IID random variables. Further, while
both (8) and [32, Theorem 5] (specialized to OT) suffice to
obtain the second bound in Corollary 4, in contrast to (7), [32,
Theorem 2] does not yield the first bound in Corollary 4.

(iii) For simplicity of presentation, we did not allow local
randomization in the formulation above. However, it can be
easily included as a part of X1 and X2 by replacing Xi

with (Xi, Ui), i = 1, 2, where U1, U2, (X1, X2) are mutually
independent. Since our proofs are based on reduction of
SK agreement to OT, by noting that mss(X2, U2|X1, U1) =
mss(X2|X1) and that the availability of local randomness does
not change our upper bound on SK length in Theorem 2,
the results above remain valid even when local randomness
is available.

(iv) An (ε, δ1, δ2)-OT capacity can be defined, without
requiring δ1n, δ2n to go to 0 as in the definition of Cε(X1, X2).
The problem of characterizing (ε, δ1, δ2)-OT capacity for all
0 < ε, δ1, δ2 < 1 remains open.

5A reduction of SK to OT in a computational security setup appeared in
[11].



Theorem 3 follows from Theorem 2, along with the Markov
relation X1—V1—X2 and the data processing inequality (3);
the corollary follows by Stein’s Lemma (see Section II-C).

IV. BIT COMMITMENT

Two parties observing correlated observations X1 and X2

want to implement information theoretically secure BC using
interactive public communication, i.e., the first party seeks to
report to the second the results of a series of coin tosses that
it conducted at its end in such a manner that, at a later stage,
the second party can detect if the first party was lying [5].
Formally, a BC protocol consists of two phases: the commit
phase and the reveal phase. In the commit phase, the first
party generates a random string K, distributed uniformly over
{0, 1}l and independent jointly of (X1, X2). Furthermore, the
two parties communicate interactively with each other. In the
reveal phase, the first party “reveals” its data, i.e., it sends
X ′1 and K ′, claiming these were its initial choices of X1

and K, respectively. Subsequently, the second party applies
a (randomized) test function T = T (K ′, X ′1, X2,F), where
T = 0 and T = 1, respectively, indicate K ′ = K and K ′ 6= K.

Definition 4 (Bit commitment). An (ε, δ1, δ2)-BC of length l
consists of a secret K ∼ unif{0, 1}l, an interactive communi-
cation F (sent during the commit phase), and a {0, 1}-valued
randomized test function T = T (K ′, X ′1, X2,F) such that the
following hold:

P (T (K,X1, X2,F) 6= 0) ≤ ε, (9)
‖PKX2F − PK × PX2F‖ ≤ δ1, (10)

P (T (K ′, X ′1, X2,F) = 0,K ′ 6= K) ≤ δ2, (11)

where random variables X ′1,K
′ are arbitrary. The first con-

dition above is the soundness condition, which captures the
reliability of BC. The next condition is the hiding condition,
which ensures that the second party cannot ascertain the secret
in the commit phase. Finally, the binding condition in (11)
restricts the probability with which the first party can cheat
in the reveal phase. Denote by Bε,δ1,δ2(X1, X2) the largest
length l of an (ε, δ1, δ2)-BC.

For n-length IID sequences Xn
1 , X

n
2 generated from PX1X2 ,

the largest rate of Bε,δ1,δ2(X
n
1 , X

n
2 ) is called the BC capacity.

Definition 5 (BC capacity). For 0 < ε, δ1, δ2 < 1, the
(ε, δ1, δ2)-BC capacity of (X1, X2) is defined as

Cε,δ1,δ2(X1, X2) = lim inf
n

1

n
Bε,δ1,δ2(X

n
1 , X

n
2 ).

The BC capacity is defined as

C(X1, X2) = lim
ε,δ1,δ2→0

Cε,δ1,δ2(X1, X2).

The following result of Winters, Nascimento, and Imai
[33] (see, also, [24, Chapter 8]) gives a simple formula for
C(X1, X2).

Theorem 7. [33] For random variables X1, X2, let V1 =

mss(X2|X1). The BC capacity is given by

C(X1, X2) = H(V1 | X2).

The main result of this section is an upper bound on
Bε,δ1,δ2(X1, X2), which in turn leads to a strong converse
for BC capacity.

Theorem 8 (Single-shot bound for BC length). Given 0 <
ε, δ1, δ2, ε + δ1 + δ2 < 1, for random variables X1, X2 and
V1 = mss(X1|X2), the following inequality holds:

Bε,δ1,δ2(X1, X2) ≤ − log βη
(
PV1V1X2 ,PV1|X2

PV1|X2
PX2

)
+ 2 log(1/ξ),

for all ξ with η = ε+ δ1 + δ2 + ξ.

Corollary 9 (Strong converse for BC capacity). For 0 <
ε, δ1, δ2, ε+ δ1 + δ2 < 1, the (ε, δ1, δ2)-BC capacity satisfies

Cε,δ1,δ2(X1, X2) ≤ H(V1 | X2),

where V1 = mss(X2|X1).

Theorem 8 is obtained by a reduction of SK agreement to
BC, which is along the lines of [33], [14], [22]; the following
lemma captures the resulting bound.

Lemma 10 (Reduction of SK to BC). For 0 < ε, δ1, δ2,
ε+ δ1 + δ2 < 1, it holds that

Bε,δ1,δ2(X1, X2) ≤ Sε+δ1+δ2(X1, (V1, X2) | X2),

where V1 = mss(X2|X1).

Remarks. (i) While local randomization was not allowed in
the foregoing discussion, as before (see Remark (iii) following
Lemma 6) our results do not change with the availability of
local randomness.

(ii) For ε, δ1, δ2 > 0, ε+ δ1 + δ2 < 1, the following bound
on Bε,δ1,δ2(X1, X2) was derived in [22, Lemma 4]:

Bε,δ1,δ2(X1, X2) ≤
H(V1|X2) + h(δ1) + h(ε+ δ2)

1− ε− δ1 − δ2
,

where h(·) is the binary entropy function. However, this bound
is weaker than Theorem 8, in general, and is not sufficient for
deriving Corollary 9.

Theorem 8 follows by using Lemma 10 with Theorem
2, along with the Markov relation X1—V1—X2 and the
data processing inequality (3); Corollary 9 follows by Stein’s
Lemma (see Section II-C).

We conclude this section by observing a simple application
of Theorem 8 in bouding the efficiency of reduction of BC to
OT. For a detailed discussion, see [22].

Example 1 (Reduction of BC to OT). Suppose two parties
have at their disposal an OT of length n. Using this as a
resource, what is the length l of (ε, δ1, δ2)-BC that can be
constructed?

Denoting by K0,K1 the OT strings, and by B the OT bit
of second party, let X1 = (K0,K1) and X2 = (B,KB). Note



that (see [30, Section II.B]) when the condition

log
P(X)

Q(X)
= D(P‖Q) (12)

is satisfied with probability 1 under P, we have

− log βε(P,Q) ≤ D(P‖Q) + log(1/(1− ε)). (13)

Therefore, since (12) holds with P = PX1X1X2
and Q =

PX1|X2
PX1X2

, and D(PX1X1X2
‖PX1|X2

PX1X2
) = n, by

Theorem 8 and (13)

l ≤ n+ log(1/(1− ε− δ1 − δ2 − η)) + 2 log(1/η),

where 0 < η < 1 − ε − δ1 − δ2, which is stronger than
the multiplicative loss bound (1) derived in [22, Corollary 2]
(fixing n = n′ = 1 in that bound).

V. DISCUSSION

We derived the impossibility bounds for OT and BC by first
reducing SK agreement to these secure computing problem
and then using the conditional independence testing bound for
secret key agreement. In spirit, the conditional independence
testing bound can be regarded as a multiterminal variant of the
meta-converse of Polyanskiy, Poor, and Verdú [20], [19] (see,
also, [12], [31]). But there is another crucial difference: the
former allows interactive communication. The admissibility
of interactive communication makes this bound useful in
cryptography where interaction is natural to consider, and it is
foreseeable that other applications of this bound in information
theoretic secrecy will emerge; an instance arises in [13]. In
fact, this bound can find applications in problems involving
interactive communication without any secrecy requirements.
For instance, it is used in [28] to derive a lower bound for
length of interactive communication needed for two parties to
exchange their correlated data.
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