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Strong Converse using Change of Measure

Arguments
Himanshu Tyagi† and Shun Watanabe‡

Abstract

The strong converse for a coding theorem shows that the optimal asymptotic rate possible with

vanishing error cannot be improved by allowing a fixed error. Building on a method introduced by Gu

and Effros for centralized coding problems, we develop a general and simple recipe for proving strong

converse that is applicable for distributed problems as well. Heuristically, our proof of strong converse

mimics the standard steps for proving a weak converse, except that we apply those steps to a modified

distribution obtained by conditioning the original distribution on the event that no error occurs. A key

component of our recipe is the replacement of the hard Markov constraints implied by the distributed

nature of the problem with a soft information cost using a variational formula introduced by Oohama.

We illustrate our method by providing a short proof of the strong converse for the Wyner-Ziv problem

and strong converse theorems for interactive function computation, common randomness and secret key

agreement, and the wiretap channel; the latter three strong converse problems were open prior to this

work.

I. INTRODUCTION

A coding theorem in information theory characterizes the optimal rate such that there exists a code

of that rate for the problem studied. Often, the first version of such theorems are proved assuming a

vanishing probability of error criterion. This criterion facilitates a simple proof relying on chain rules

and Fano’s inequality. The strong converse holds for a coding theorem if the optimal rate claimed by

the theorem cannot be improved even if a fixed error is allowed. The first strong converse was shown

for the point-to-point channel coding theorem and source coding theorem by Wolfowitz (see [48]). A
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general method for proving strong converse for coding theorems in multiterminal information theory was

introduced in [4]. This method uses a strong converse for the image-size characterization problem, which

is in turn shown using the blowing-up lemma; see [12] for a comprehensive treatment. The approach

based on blowing-up lemma entails, in essence, changing the code to a list-code with a list-size of

vanishing rate. Related recent works that involve a change in the underlying code, too, but use modern

tools from functional inequalities and measure concentration literature include1 [15] and2 [30].

In this work, we present a simple method for proving strong converses for multiterminal problems that

uses very similar steps as the weak converse proofs. Our method consists of two steps, both building

on techniques available in the literature. The first step is a change of measure argument3 due to Gu and

Effros [19], [20]. The key idea is to evaluate the performance of a given code not under the original

product measure, but under another modified measure which depends on the code and under which the

code is error-free. Thus, when the standard rate bounds are applied along with Fano’s inequality, we get

a bound involving information quantities for the tilted measure, but without the Fano correction term for

the error.

In [19], [20], Gu and Effros applied the change of measure argument for proving strong converse for

source coding problems where there exists a terminal that observes all the random variables involved;

a particular example is the Gray-Wyner (GW) problem [18]. A difficulty in extending this approach

to other distributed source coding problems is the Markov chain constraints among random variables

implied by the information structure of the communication. Specifically, these Markov chain constraints

might be violated when the measure is switched. This technical difficulty was circumvented in [45] for

the Wyner-Ahlswede-Körner (WAK) problem [5], [49], i.e., the problem of lossless source coding with

coded side information, by relating the WAK problem to an extreme case of the GW problem. In this

paper, we develop a more direct and general recipe for applying the change of measure argument to

various distributed coding problems.

The second step of our recipe is the replacement of the hard Markov chain and functional constraints

by soft information cost penalties using variational formulae introduced by Oohama in a series of

papers including [35], [34]. These variational formulae involve optimization over a nonnegative Lagrange

multiplier, with the optimum corresponding to the form with Markov constraints. In fact, when the change

of measure step is applied some of the distributions that need to preserved, such as the channel transition

probabilities, may change. These, too, can be accommodated by a KL-divergence cost constraint. At a

1For another use of the Gaussian-Poincaré inequality in information theory, see [39].
2The approach in [30] was extended in [29] to derive a dispersion converse bound for the Wyner-Ahlswede-Körner network.
3Our argument differs from the change of measure argument used to prove sphere-packing bounds (cf. [12], [22]).
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high level, we replace all “hard” information constraints by “soft” divergence costs and complete the

proof of strong converse by establishing super- or sub-additivity of the resulting penalized rate functions.

As an illustration of this approach, consider the lossless source coding problem; even though this

problem does not involve any Markov chain constraint, it illustrates the essential ideas involved in our

approach. Suppose that an independent and identically distributed (i.i.d.) source Zn is compressed to

ϕ(Zn) such that there exists a function ψ satisfying P (ψ(ϕ(Zn)) = Zn) ≥ 1− ε. Let C denote the set

{zn : ψ(ϕ(zn)) = zn} of sequences where no error occurs. The strong converse for the lossless source

coding theorem will be obtained upon showing that the rate of the code is bounded below by entropy

H(Z) asymptotically, irrespective of the value of 0 < ε < 1. To show this, we change the probability

measure to PZ̃n defined by4

PZ̃n (zn) = P (Zn = zn|Zn ∈ C) . (1)

This measure is not too far from the original measure under KL-divergence. Indeed,5

D(PZ̃n‖PZn) ≤ log
1

1− ε
.

On the other hand, under PZ̃n , the error probability of the code (ϕ,ψ) is exactly zero. Thus, by mimicking

the standard weak converse arguments, we have

log |C| ≥ H(Z̃n).

The next step is to single-letterize H(Z̃n), which now does not correspond to a product measure and

may not be super-additive on its own. We circumvent this difficulty by adding a divergence cost to get

1

n
log |C| ≥ 1

n
H(Z̃n) +

α

n

[
D(PZ̃n‖PZn)− log(1/(1− ε))

]
≥ min

PZ̃

[
H(Z̃) + αD(PZ̃‖PZ)

]
− α log(1/(1− ε))

n
,

for any α > 0. The second inequality uses a simple super-additivity property that we show in Proposition 1

for conditional entropy. The proof of strong converse is completed by using the following variational

formula for entropy:

H(Z) = sup
α>0

min
PZ̃

[
H(Z̃) + αD(PZ̃‖PZ)

]
.

4In [19], [20], the new distribution had a more complicated form.
5This simple, but important, observation was used in [32] to provide a simple proof of the blowing-up lemma.
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Using our recipe, we can obtain simple proof for some known strong converse results and can, in fact,

obtain several new strong converse results, including for problems involving interactive communication.

The first result we present is the lossy source coding with side information problem, also known as the

Wyner-Ziv (WZ) problem [51]. The strong converse for the WZ problem was proved only recently in

[34]. We use our general recipe for proving a strong converse to give a more compact proof for the

WZ strong converse which, we believe, is more accessible than the original proof of [34].6 The second

problem we consider is the interactive function computation problem (cf. [37], [31], [8]). Prior to our

work, a strong converse for this well-studied problem was unavailable. A technical difficulty in showing

such a result arises from the multiple auxiliary random variables and Markov chain constraints that

appear in the optimal sum-rate. The strong converse for the interactive function computation problem

has attracted attention in the theoretical computer science community as well, in the context of direct

product theorems in communication complexity. A version of the strong converse result was shown in

[9] in a slightly different setting, but the basic strong converse itself has been open. Furthermore, the

information odometer approach used in [9] is technically much more involved than our simple change

of measure argument.

In addition to the two source coding problems mentioned above, we also apply our recipe for problems

of generating common randomness and secret key with interactive communication [3], [42]. The strong

converse for these problems with interactive communication were unavailable prior to our work; see [24]

and the extended version of [30] for partial results. Since these problems involve a total variation distance

constraint, we need some additional tricks for changing measure. In particular, we seek a replacement

for the correctly decoded set of sequences C. We illustrate the essential idea using a simple random

number generation problem, which is also known as the intrinsic randomness problem (cf. [21]). Suppose

that an i.i.d. source Zn is converted to K = ϕ(Zn) such that the total variation distance criterion

d(PK ,Punif) ≤ δ is satisfied, where Punif is the uniform distribution of the range K of K. Consider the

set

C =

{
zn : log

1

PK (ϕ(zn))
≥ log |K| − log(2/(1− δ))

}
(2)

comprising elements zn mapped to high entropy density realizations of K. It can be seen from our

analysis in Section V that

P (Zn ∈ C) ≥ 1− δ
2

.

6The proof in [34] provides a stronger result in form of an explicit lower bound on the exponent of the probability of
correctness.
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Thus, by changing the measure to PZ̃n given in (1) but using the set C of (2), we have D(PZ̃n‖PZn) ≤

log(2/(1 − δ)). Furthermore, for this changed measure, the random variable K̃ = ϕ(Z̃n) has the min-

entropy at least log |K| − 2 log(2/(1− δ)), which implies

log |K| ≤ Hmin(K̃) + 2 log(2/(1− δ))

≤ H(K̃) + 2 log(2/(1− δ))

≤ H(Z̃n) + 2 log(2/(1− δ)).

The entropy term on the right-side can be bounded using the sub-additivity of entropy. However, the

resulting single-letterized measure may deviate from the original PZ , which needs to be retained. To that

end, we add a divergence cost to get

1

n
log |K| ≤ 1

n
H(Z̃n)− α

n

[
D
(
PZ̃n‖PZn

)
− log(2/(1− δ))

]
+

2 log(2/(1− δ))
n

≤ max
PZ̃

[
H(Z̃)− αD(PZ̃‖PZ)

]
+

(α+ 2) log(2/(1− δ))
n

,

for any α > 0. The strong converse for the random number generation problem follows from the

variational formula

H(Z) = inf
α>0

max
PZ̃

[
H(Z̃)− αD(PZ̃‖PZ)

]
.

The final setting we consider is the wiretap channel [50], [10]. The strong converse theorem for

degraded wiretap channel was proved in [23] (see [41] for a partial strong converse). However, its

extension to general wiretap channel has remained open.7 By using our general recipe, we provide a proof

for the strong converse theorem for the general wiretap channel. Compared to other problems mentioned

above, this problem is more involved, and requires a few more tricks including the expurgation of messages

to replace average guarantees with worst-case guarantees and the construction of the changed measure

using a set with bounded log-likelihood ratio of wiretappers observation probability and its probability

given the message. Nevertheless, given the technical difficulties in prior attempts, this is a relatively

simple proof.

Overall, our main message in this work is that strong converses can be proven using similar techniques

as those used for proving weak converses, applied after an appropriate change of measure. However, we

need to work with new variational forms of capacity formulae where the hard information constraints

7The argument in [47] has a technical flaw, and we are unable to verify the technically involved proof-sketch in the conference
paper [17]; a full-version of [17] has not been published so far.
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are replaced with soft KL-divergence costs.

A conceptually related approach for proving strong converse was recently proposed by Kosut and

Kliewer in [28]. In their approach, the strong converse for a given network is reduced first to the

weak converse by adding an extra edge of vanishing rate to the network, which allows negligible

cooperation among users. Then, the strong converse will follow if the so-called edge removal property

holds, namely the capacity is not changed when the extra edge is removed. Since Markov chain constraints

in multiterminal problems stem from distributed nature of the problems, the replacement of those Markov

chain constraints with soft KL-divergence costs in our recipe is, at high-level, similar to adding a “soft

edge” to increase cooperation among the terminals. However, the soft divergence cost seems to be a more

versatile tool; in particular, it allows us to handle even interactive communication.

Another related recent work is that of Jose and Kulkarni [26], [27]. Their approach considers the

performance of the optimal code for a coding problem and poses it as an optimization problem, which

is further bounded by the value of a linear program obtained by relaxing some constraints. Even though

this approach provides tight converse bounds implying strong converse for some problems, applicability

of this approach to problems involving auxiliary random variables is unclear.

In a slightly different direction, Fong and Tan [16] proved strong converse theorems for multi-message

networks with tight cut-set bound, such as the degraded relay channel and relay channel with orthogonal

components, for both discrete and Gaussian channels. These results are inspired by the result for the

reliability function of a DMC with feedback above capacity [11], and are different in nature than our

setting. In particular, these results do not include multiple auxiliary random variables, which is a significant

difficulty we overcome in this paper.

The remainder of the paper is organized as follows. We begin by reviewing a few simple results in the

next section, which will be used throughout the paper. The strong converse for the WZ problem is given

in Section III and for the function computation problem in Section IV. The next two sections contain

problems involving total variation constraints, with the common randomness generation and secret key

agreement in Section V, and the wiretap channel problem in Section VI. We conclude with discussions

on exponential strong converse and extensions in the final section.

Notation: Throughout the paper, we restrict to discrete random variables taking finitely many values

and denote the random variable with a capital letter, for instance X , its range-set with the corresponding

calligraphic, e.g. X , and each realization with a small letter, e.g. x. For information measures, we follow

the standard notations in [12]: The entropy, the KL divergence, and the mutual information are denoted

by H(X), D(P‖Q), and I(X∧Y ), respectively. The total variation distance between two distributions P

and Q is denoted by d(P,Q) := 1
2

∑
x |P (x)−Q (x) |. For a sequence Xn = (X1, · · · , Xn) of random
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variables, we denote X−j = (X1, . . . , Xj−1) and X+
j = (Xj+1, . . . , Xn), where X−1 and X+

n are regarded

as the empty string. The indicator function is denoted by 1[·]. Other notations will be introduced when

necessary, but are standard notations used in the multiterminal information theory literature.

II. TECHNICAL TOOLS

We begin by assembling the simple tools that we will use repeatedly in our proofs. The first is perhaps

a new observation; the other two are standard.

Typically, we use additivity of (conditional) entropy for independent random variables for proving

converse bounds. However, in our proofs, once we change the measure, the resulting random variables

need not be independent. Nevertheless, the following simple result fills the gap and shows that if we add

a divergence cost for change of measure, the sum is super-additive.

Proposition 1. For i.i.d. PXnY n with common distribution PXY and any PX̃nỸ n , we have

H(X̃n|Ỹ n) +D(PX̃nỸ n‖PXnY n) ≥ n
[
H(X̃J |ỸJ) +D(PX̃J ỸJ‖PXY )

]
,

where J ∼ unif({1, ..., n}) is the time-sharing random variable and is assumed to be independent of

all the other random variables involved.

Proof. The left-side can be expressed as

H(X̃n|Ỹ n) +D(PX̃n|Ỹ n‖PXn|Y n |PỸ n) +D(PỸ n‖PY n).

The sum of the first two terms satisfy

H(X̃n|Ỹ n) +D(PX̃n|Ỹ n‖PXn|Y n |PỸ n) =
∑
xn,yn

PX̃nỸ n (xn, yn) log
1

PXn|Y n (xn|yn)

=

n∑
j=1

∑
x,y

PX̃j Ỹj (x, y) log
1

PX|Y (x|y)

= n
∑
x,y

PX̃J ỸJ (x, y) log
1

PX|Y (x|y)

= nH(X̃J |ỸJ) + nD(PX̃J |ỸJ‖PX|Y |PỸJ ),

and the third satisfies

D(PỸ n‖PY n) =

n∑
j=1

D(PỸj |Ỹ −j
‖PY |PỸ −j )
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≥
n∑
j=1

D(PỸj‖PY )

≥ nD(PỸJ‖PY ),

which completes the proof.

The next tool we present is essential for handling the distributed settings we consider. It allows us

to replace the “hard” Markov chain and function constraints in our bounds with “soft” costs using a

variational formula introduced by Oohama (cf. [34]) in this context. This is important since these hard

constraints may not hold once we change the measure. We describe this approach in an abstract form

below; proofs for specific variants needed for our results are similar and have been relegated to the

appendix.

Let G(PZ1Z2
) be a bounded continuous function of PZ1Z2

. Define8

G(PZ1Z2
) = inf

PU|Z1Z2 :PU|Z1Z2=PU|Z1

E
[
G(PZ1Z2|U )

]
.

Note that by the support lemma [12], it suffices to restrict the infimum to U with |U| ≤ |Z1|, and thereby

the inf can be replaced by min using compactness of the finite dimensional probability simplex. The

next result we present is a variational formula for G(PZ1Z2
) that allows us to replace the minimization

over U satisfying the Markov chain condition U −◦− Z1 −◦− Z2 to that over all PU |Z1Z2
.

Proposition 2. Let G(PZ1Z2
) be a bounded continuous function over the probability simplex P(Z1×Z2).

Then, the function G(PZ1Z2
) satisfies

G(PZ1Z2
) = sup

α>0
min

PU|Z1Z2

[
E
[
G(PZ1Z2|U )

]
+ αI(U ∧ Z2|Z1)

]
. (3)

Proof. The left-side is greater than or equal to the right-side since, for every α > 0, the left-side is

obtained by restricting the inner minimization on the right to the distribution satisfying U −◦− Z1 −◦− Z2.

To prove the other direction, first note that I(U ∧Z1|Z2) can be written as D(PUZ1Z2
‖PU |Z1

PZ1
PZ2|Z1

).

Given α > 0, let PαU |Z1Z2
attain the inner minimum in (3) for α. Since the function G(·) is bounded,

say it lies in an interval [a, b], the same holds for the function G(·). Therefore, it must hold that

D(PαUZ1Z2
‖PαU |Z1

PZ1Z2
) ≤ (b−a)/α. Let P̃UZ1Z2

= PαU |Z1
PZ1Z2

. Since G(·) is continuous9 on a compact

8We abbreviate G(PZ1Z2|U (·|U)) as G(PZ1Z2|U ).
9We are assuming G(·) is continuous with respect to the total variation distance. Then, it is also continuous with respect to

the KL divergence using Pinsker’s inequality.
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domain, it is also uniformly continuous. Therefore, there exists a function ∆(t) satisfying ∆(t)→ 0 as

t→ 0 such that

E
[
G(PαZ1Z2|U )

]
≥ E

[
G(P̃Z1Z2|U )

]
−∆((b− a)/α)

≥ G(PZ1Z2
)−∆((b− a)/α).

Thus, we obtain the required inequality by taking α→∞, which completes the proof.

The variational form above can be used to handle even multiple Markov relations by adding a similar

cost for each constraint. Furthermore, we can even handle functional constraints such as H(Z1|U,Z2) = 0

by adding an additional cost αH(Z1|U,Z2). These extensions of Proposition 2 will be used in our proofs.

Additionally, we also need a cost to account for the deviation from the underlying fixed source

and channel distributions that occur when we apply our change of measure arguments. The following

alternative variational formula for G(PZ1Z2
) will be handy:

Proposition 3. Let G(PZ1Z2
) be a bounded continuous function over the probability simplex P(Z1×Z2).

Then, we have

G(PZ1Z2
) = sup

α>0
min

PŨZ̃1Z̃2

[
E
[
G(PZ̃1Z̃2|Ũ )

]
+ α

(
D(PZ̃1Z̃2

‖PZ1Z2
) + I(U ∧ Z2|Z1)

)]
.

The proof is similar to that of Proposition 2; instead of proving this meta-result, we will prove our

specific variational formulae in the appendix.

The final result we recall is a standard tool for single-letterization from [12, pg. 314]– its power lies in

its validity for arbitrary distributions. For random variables Xn, Y n, U with an arbitrary joint distribution

PXnY nU , it holds that

H(Xn|U)−H(Y n|U) =

n∑
i=1

H(Xi|X−i , Y
+
i , U)−H(Yi|X−i , Y

+
i , U). (4)

III. LOSSY SOURCE CODING WITH SIDE-INFORMATION

In the lossy source coding problem with side-information, the goal is to compress a source sequence

to enable its recovery within a prespecified distortion at a receiver with side-information. Formally, for a

given source PXY on a finite alphabet X × Y , a lossy source code with side-information consists of an

encoder ϕ : X n →M and a decoder ψ :M×Yn → Zn, where Z is the reproduction alphabet. Consider

a distortion measure d : X × Z → [0, Dmax] and its n-fold extension d(xn, zn) =
∑n

i=1 d(xi, zi). A
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rate-distortion pair (R,D) is ε-achievable if, for every sufficiently large n, there exists a code (ϕ,ψ)

such that

P (d(Xn, ψ(ϕ(Xn), Y n)) > nD) ≤ ε (5)

and

1

n
log |M| ≤ R. (6)

Let RWZ(ε|PXY ) be the closure of the set of all ε-achievable rate-distortion pairs. Define

RWZ(PXY ) :=
⋂

0<ε<1

RWZ(ε|PXY ).

The following characterization10 of RWZ(PXY ) was given in [51]:

RWZ(PXY ) = {(R,D) : ∃ (U,Z) s.t. |U| ≤ |X |+ 1,

U −◦−X −◦− Y,Z −◦− (U, Y )−◦−X,

R ≥ I(U ∧X|Y ),E[d(X,Z)] ≤ D}.

The set RWZ(PXY ) is closed and convex and can be expressed alternatively using tangent lines as follows:

RWZ(PXY ) =
⋂
µ≥0

{(R,D) : R+ µD ≥ RµWZ(PXY )},

where

RµWZ(PXY ) := min
{
I(U ∧X|Y ) + µE[d(X,Z)] :

∃ (U,Z) s.t. |U| ≤ |X |, U −◦−X −◦− Y,Z −◦− (U, Y )−◦−X
}
.

The optimal rate region above involves Markov relations, which will become intractable once we change

the measure. Furthermore, once we change the measure and obtain a single-letter bound, the source

distribution may deviate from PXY . To circumvent these difficulties, we switch to the following variational

form of RµWZ(PXY ), which will be proved in Appendix A:

RµWZ(PXY ) = sup
α>0

Rµ,αWZ (PXY ), (7)

10In fact, we can restrict Z to be a function of (U, Y ).
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where

Rµ,αWZ (PXY ) := min
PŨX̃Ỹ Z̃

[
I(Ũ ∧ X̃|Ỹ ) + µE[d(X̃, Z̃)] + αD(PŨX̃Ỹ Z̃‖QŨXY Z̃) +D(PX̃Ỹ ‖PXY )

]
(8)

= min
PŨX̃Ỹ Z̃

[
I(Ũ ∧ X̃|Ỹ ) + µE[d(X̃, Z̃)]

+
(
(α+ 1)D(PX̃Ỹ ‖PXY ) + αI(Ũ ∧ Ỹ |X̃) + αI(Z̃ ∧ X̃|Ũ , Ỹ )

)]
(9)

and QŨXY Z̃ = PZ̃|Ũ Ỹ PŨ |X̃PXY is the distribution induced from each PŨX̃Ỹ Z̃ . Note that this QŨXY Z̃

respects the information structure of the coding problem; we will use this convention in our usage of

notation Q throughout. By the support lemma [12], the range U of Ũ can be restricted to |U| ≤ |X ||Y||Z|.

Remark 1. In effect, we have replaced the “hard constraints” imposed by the requirements of preserving

the input source distribution and the Markov relations between the communication sent, the source and

the reconstructed estimate with “soft” divergence penalties which are amenable to single-letterization

using standard chain rules. The factor (α+ 1) instead of α is only to enable a technical manipulation in

the proof of Theorem 4 below. However, semantically, the bound can be understood by just considering

an extra αD(PŨX̃Ỹ Z̃‖QŨXY Z̃) cost which captures all the aforementioned constraints. In fact, a factor

in the form of any function f(α) of α that blows-up to infinity as α tends to infinity will work, since

we take α → ∞ at the end. In the definition of Rµ,αWZ (PXY ), the divergence form (8) is heuristically

appealing and affords a simple proof of the variational formula (7) (see Appendix A); on the other hand,

the mutual information form (9) is amenable to single-letterization in the proof of Theorem 4 below.

We are now in a position to prove the strong converse. The main step is to show the following result,

which is obtained simply by using the super-additivity of the lower bound obtained after change of

measure.

Theorem 4. For every n ∈ N, µ ≥ 0, and α > 0, we have

Rµ,αWZ (PnXY ) ≥ nRµ,αWZ (PXY ).

As a corollary, we obtain the strong converse for the lossy source coding with side-information problem,

which was shown in [34] using a different, more complicated method.

Corollary 5. For every 0 < ε < 1, we have RWZ(ε|PXY ) = RWZ(PXY ).
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Proof of Corollary 5: For a given code (ϕ,ψ) satisfying (5) and (6), define

D = {(xn, yn) : d(xn, ψ(ϕ(xn), yn)) ≤ nD}.

Further, let PX̃nỸ n be defined by

PX̃nỸ n (xn, yn) :=
PnXY (xn, yn)1[(xn, yn) ∈ D]

PnXY (D)
.

Then, the excess distortion probability of the same code (ϕ,ψ) for the source (X̃n, Ỹ n) is exactly 0,

which implies Z̃n = ψ(ϕ(X̃n), Ỹ n) satisfies E[d(X̃n, Z̃n)] ≤ nD. Thus, by mimicking the standard

weak converse proof, we have

n(R+ µD) ≥ I(S̃ ∧ X̃n|Ỹ n) + µE[d(X̃n, Z̃n)],

where S̃ = ϕ(X̃n). Also,

D(PX̃nỸ n‖P
n
XY ) = log

1

PnXY (D)
≤ log

1

1− ε
.

Thus, by noting that costs I(S̃ ∧ Ỹ n|X̃n) and I(Z̃n ∧ X̃n|S̃, Ỹ n) are both 0, we have

n(R+ µD) ≥ I(S̃ ∧ X̃n|Ỹ n) + µE[d(X̃n, Z̃n)] +
(
(α+ 1)D(PX̃nỸ n‖P

n
XY )

+ αI(S̃ ∧ Ỹ n|X̃n) + αI(Z̃n ∧ X̃n|S̃, Ỹ n)
)
− (α+ 1) log

1

1− ε

≥ Rµ,αWZ (PnXY )− (α+ 1) log
1

1− ε
.

Therefore, by Theorem 4, we have

R+ µD ≥ Rµ,αWZ (PXY )− (α+ 1)

n
log

1

1− ε
(10)

for every µ ≥ 0 and α > 0, whereby the corollary follows from (7).

Proof of Theorem 4: By setting

G1(PX̃nỸ n) := H(X̃n|Ỹ n) + αH(Ỹ n|X̃n) + (α+ 1)D(PX̃nỸ n‖P
n
XY ),

G2(PŨX̃nỸ nZ̃n) := −H(X̃n|Ũ , Ỹ n) + µE[d(X̃n, Z̃n)] + α
(
−H(Ỹ n|Ũ , X̃n) + I(Z̃n ∧ X̃n|Ũ , Ỹ n)

)
,

for given PŨX̃nỸ nZ̃n , we can write

Rµ,αWZ (PnXY ) = min
PŨX̃nỸ nZ̃n

[
G1(PX̃nỸ n) +G2(PŨX̃nỸ nZ̃n)

]
.
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Fix arbitrary PŨX̃nỸ nZ̃n . By Proposition 1, G1(PX̃nỸ n) can be lower bounded as11

G1(PX̃nỸ n) ≥ nG1(PX̃J ỸJ ). (11)

For G2(PŨX̃nỸ nZ̃n), note that

−H(X̃n|Ũ , Ỹ n) = −
n∑
j=1

H(X̃j |Ũ , X̃−j , Ỹ
n)

≥ −
n∑
j=1

H(X̃j |Ũ , X̃−j , Ỹ
+
j , Yj),

= −nH(X̃J |ŨJ , J, ỸJ),

where Ũj = (Ũ , X̃−j , Ỹ
+
j ). Also, E[d(X̃n, Z̃n)] = nE[d(X̃J , Z̃J)]. For the remaining terms in G2, we

have

−H(Ỹ n|Ũ , X̃n) + I(Z̃n ∧ X̃n|Ũ , Ỹ n)

= −H(X̃n|Ũ , Ỹ n, Z̃n) +H(X̃n|Ũ)−H(Ỹ n|Ũ)

=

n∑
j=1

[
−H(X̃j |Ũ , X̃−j , Ỹ

n, Z̃n) +H(X̃j |Ũ , X̃−j , Ỹ
+
j )−H(Ỹj |Ũ , X̃−j , Ỹ

+
j )
]

≥ n
[
−H(X̃J |ŨJ , J, ỸJ , Z̃J) +H(X̃J |ŨJ , J)−H(ỸJ |ŨJ , J)

]
= n

[
−H(ỸJ |ŨJ , J, X̃J) + I(Z̃J ∧ X̃J |ŨJ , J, ỸJ)

]
,

where the second identity uses (4). Upon combining the observations above, we get

G2(PŨX̃nỸ nZ̃n) ≥ nG2(PŨJJX̃J ỸJ Z̃J ). (12)

Since (11) and (12) hold for an arbitrary PŨX̃nỸ nZ̃n , the proof is complete.

IV. INTERACTIVE FUNCTION COMPUTATION PROBLEM

The second problem we consider entails the computation of a function f of (X,Y ) using interactive

communication. For the ease of presentation, we limit ourselves to protocols with 2-rounds of commu-

nication, but our analysis extends to protocols with bounded (independent of n) rounds.

For a given source PXY on a finite alphabet X ×Y , an (2-round) interactive communication protocol

π with inputs (Xn, Y n) consists of mappings ϕ1 : X n → {0, 1}l1 and ϕ2 : Yn×{0, 1}l1 → {0, 1}l2 ; the

11By a slight abuse of notation, G1(PX̃J ỸJ
) is defined by replacing PX̃nỸ n and Pn

XY with PX̃J ỸJ
and PXY in the definition

of G1(PX̃nỸ n).
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length of such a protocol π is l1 + l2. The random transcript of the protocol is denoted by Π = (Π1,Π2)

where Π1 = ϕ1(Xn), and Π2 = ϕ2(Y n,Π1).

A protocol π ε-computes a function f : X ×Y → Z if we can form estimates Fn1 = ψ1(Xn,Π2) and

Fn2 = ψ2(Y n,Π1) such that

P (f(Xi, Yi) = F1i = F2i, ∀i ∈ [n]) ≥ 1− ε.

A rate R > 0 is an ε-achievable communication rate for f if, for all n sufficiently large, there exists an

interactive communication protocol π of length |π| less than nR that ε-computes f . The infimum over

all ε-achievable communication rates for f is denoted by Rf (ε|PXY ). The supremum over ε ∈ (0, 1) of

all ε-achievable communication rates for f is denoted by Rf (PXY ).

The following characterization of Rf (PXY ) was given in [37]:12

Rf (PXY ) = min I(U, V ∧X|Y ) + I(U, V ∧ Y |X), (13)

where the minimum is over all U, V satisfying U −◦−X −◦− Y , V −◦− (Y, U)−◦−X; H(f(X,Y )|Y,U) =

H(f(X,Y )|X,U, V ) = 0; and |U| ≤ |X |, |V| ≤ |Y||X |.

Remark 2. The right-side of (13) is referred to as the intrinsic information complexity of f (using 2-round

communication protocols) in the computer science literature (cf. [8]). By noting the Markov relations

U −◦−X −◦− Y and V −◦− (Y,U)−◦−X , we can obtain the following equivalent expression for it:

I(U ∧X|Y ) + I(V ∧ Y |U,X),

which is perhaps more commonly used in the information theory literature (cf. [37], [31]). In a similar

vein, we use the extrinsic information complexity I(U, V ∧ X,Y ) to describe the results in Section V,

which, too, can be expressed alternatively using the aforementioned Markov relations.

In the manner of Proposition 3, we can replace the “hard” Markov chain and functional constraints

with “soft” divergence penalties to get (see Appendix B for the proof)

Rf (PXY ) = sup
α>0

Rαf (PXY ), (14)

where

Rαf (PXY ) := min
PŨṼ X̃Ỹ

[
I(Ũ , Ṽ ∧ X̃|Ỹ ) + I(Ũ , Ṽ ∧ Ỹ |X̃) + αD(PŨ Ṽ X̃Ỹ ‖QŨ Ṽ XY )

12See [31], [8] for the extension to multiple rounds.
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+ (α+ 2)D(PX̃Ỹ ‖PXY ) + α
(
D(PŨ |X̃Ỹ ‖PŨ |X̃ |PX̃Ỹ ) +H(F̃ |Ỹ , Ũ) +H(F̃ |X̃, Ũ , Ṽ )

)]
= min

PŨṼ X̃Ỹ

[
I(Ũ , Ṽ ∧ X̃|Ỹ ) + I(Ũ , Ṽ ∧ Ỹ |X̃) + (2α+ 2)D(PX̃Ỹ ‖PXY )

+ α
(
2I(Ũ ∧ Ỹ |X̃) + I(Ṽ ∧ X̃|Ỹ , Ũ) +H(F̃ |Ỹ , Ũ) +H(F̃ |X̃, Ũ , Ṽ )

)]
,

F̃ = f(X̃, Ỹ ), and QŨ Ṽ XY = PṼ |Ũ Ỹ PŨ |X̃PXY is the distribution induced from each PŨ Ṽ X̃Ỹ and

respects the information constraints of the coding problem. The ranges U and V of Ũ and Ṽ can be

restricted to |U| ≤ |X ||Y| and |V| ≤ |X |2|Y|2. The two forms described above have different utilities

as described in Remark 1. As in the previous section, we divide the proof of strong converse into two

parts. The main technical component is the following result.

Theorem 6. For every n ∈ N and α > 0, we have

Rαf (PnXY ) ≥ nRαf (PXY ),

where in defining Rαf (PnXY ) we use F̃n = (f(X̃1, Ỹ1), ..., f(X̃n, Ỹn)).

As corollary, we get the strong converse theorem for function computation.

Corollary 7. For every 0 < ε < 1, we have Rf (ε|PXY ) = Rf (PXY ).

The proof of corollary follows from Theorem 6 using similar steps as the proof of Corollary 5 where

the changed measure PX̃nỸ n is now obtained by conditioning on the set of inputs for which no error

occurs, i.e., the set

D = {(xn, yn) : ψ1(xn, ϕ2(yn, ϕ1(xn))) = ψ2(yn, ϕ1(xn)) = (f(x1, y1), ..., f(xn, yn))}.

We close this section with a proof of Theorem 6.

Proof of Theorem 6: By setting

G1(PX̃n,Ỹ n) :=
[
H(X̃n|Ỹ n) +D(PX̃nỸ n‖PXnY n)

]
+ (2α+ 1)

[
H(Ỹ n|X̃n) +D(PX̃nỸ n‖PXnY n)

]
and

G2(PŨ Ṽ X̃nỸ nF̃n) := −H(X̃n|Ỹ n, Ũ , Ṽ )−H(Ỹ n|X̃n, Ũ , Ṽ )− 2αH(Ỹ n|X̃n, Ũ)

+ αI(Ṽ ∧ X̃n|Ỹ n, Ũ) + αH(F̃n|Ỹ n, Ũ) + αH(F̃n|X̃n, Ũ , Ṽ )
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for given PŨ Ṽ X̃nỸ n with F̃i = f(X̃i, Ỹi) for 1 ≤ i ≤ n, we can write

Rαf (PnXY ) = min
PŨṼ X̃nỸ n

[
G1(PX̃n,Ỹ n) +G2(PŨ Ṽ X̃nỸ nF̃n)

]
.

Fix arbitrary PŨ Ṽ X̃nỸ n . By Proposition 1, we get

G1(PX̃nỸ n) ≥ nG1(PX̃J ỸJ ), (15)

where J is distributed uniformly over {1, ..., n}. For G2(PŨ Ṽ X̃nỸ nF̃n), since removing condition increases

entropy, we have

−H(X̃n|Ỹ n, Ũ , Ṽ )−H(Ỹ n|X̃n, Ũ , Ṽ ) ≥ −nH(X̃J |ỸJ , ŨJ , J, Ṽ )− nH(ỸJ |X̃J , ŨJ , J, Ṽ )

where Ũj = (Ũ , X̃−j , Ỹ
+
j ). Furthermore, noting that

− 2H(Ỹ n|X̃n, Ũ) + I(Ṽ ∧ X̃n|Ỹ n, Ũ) +H(F̃n|Ỹ n, Ũ) +H(F̃n|X̃n, Ũ , Ṽ )

= 2[H(X̃n|Ỹ n, Ũ)−H(Ỹ n|X̃n, Ũ)] + [H(Ỹ n|X̃n, Ũ , Ṽ )−H(X̃n|Ỹ n, Ũ , Ṽ )]

−H(X̃n|Ỹ n, Ũ)−H(Ỹ n|X̃n, Ũ , Ṽ ) +H(F̃n|Ỹ n, Ũ) +H(F̃n|X̃n, Ũ , Ṽ )

= 2[H(X̃n|Ỹ n, Ũ)−H(Ỹ n|X̃n, Ũ)] + [H(Ỹ n|X̃n, Ũ , Ṽ )−H(X̃n|Ỹ n, Ũ , Ṽ )]

−H(X̃n, F̃n|Ỹ n, Ũ)−H(Ỹ n, F̃n|X̃n, Ũ , Ṽ ) +H(F̃n|Ỹ n, Ũ) +H(F̃n|X̃n, Ũ , Ṽ )

= 2[H(X̃n|Ũ)−H(Ỹ n|Ũ)] + [H(Ỹ n|Ũ , Ṽ )−H(X̃n|Ũ , Ṽ )]

−H(X̃n|Ỹ n, F̃n, Ũ)−H(Ỹ n|X̃n, F̃n, Ũ , Ṽ ),

where we used the fact that F̃n is function of (X̃n, Ỹ n) to append F̃n in the second equality. Thus, by

using (4) twice, we obtain

− 2H(Ỹ n|X̃n, Ũ) + I(Ṽ ∧ X̃n|Ỹ n, Ũ) +H(F̃n|Ỹ n, Ũ) +H(F̃n|X̃n, Ũ , Ṽ )

≥ 2n(H(X̃J |ŨJ , J)−H(ỸJ |ŨJ , J)) + n(H(ỸJ |ŨJ , J, Ṽ )−H(X̃J |ŨJ , J, Ṽ ))

− nH(X̃J |ỸJ , F̃J , ŨJ , J)− nH(ỸJ |X̃J , F̃J , ŨJ , J, Ṽ )

= −2nH(ỸJ |X̃J , ŨJ , J) + nI(Ṽ ∧ X̃J |ỸJ , ŨJ , J) + nH(F̃J |ỸJ , ŨJ , J) + nH(F̃J |X̃J , ŨJ , J, Ṽ ),

where we used the fact F̃J = f(X̃J , ỸJ) to remove the unnecessary F̃J in the previous identity. Upon

combining the bounds above, we obtain

G2(PŨ Ṽ X̃nỸ nF̃n) ≥ nG2(P(ŨJ ,J)Ṽ X̃J ỸJ F̃J
). (16)
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Since (15) and (16) hold for arbitrary PŨ Ṽ X̃nỸ n , the proof is complete.

V. COMMON RANDOMNESS GENERATION AND SECRET KEY AGREEMENT

We now move to the closely related problems of common randomness generation and secret key

agreement. In these problems, an additional challenge arises due to the presence of a total variation

distance constraint. We circumvent this difficulty by replacing the total variation distance constraint by

a constraint on log-likelihood; the resulting set is used in our change of measure arguments. A similar

approach will be used later for the wiretap channel strong converse where, too, the security constraint

poses a similar challenge.

We begin with the common randomness problem and extend to the secret key agreement case using

the connection between the two problems. Note that while the change of measure arguments presented

here prove the strong converse for secret key agreement with limited communication, the strong converse

for secret key agreement with unlimited communication is available in [43]. In fact, the conditional

independence testing bound of [43] yields even the precise second-order term (cf. [24]); it is unclear if

our change of measure approach can do the same.

A. Common Randomness Generation

Consider a source PXY on a finite alphabet X × Y . An (2-round) interactive common randomness

generation protocol13 π with input (Xn, Y n) consists of mappings ϕ1 : X n → {0, 1}l1 and ϕ2 : Yn ×

{0, 1}l1 → {0, 1}l2 ; the length |π| of such a protocol π is l1 + l2. The random transcript of the protocol

is denoted by Π = (Π1,Π2), where Π1 = ϕ1(Xn) and Π2 = ϕ2(Y n,Π1).

Given a protocol, a pair of random variables (K1,K2) taking values in a finite set K constitute an

(ε, δ)-CR recoverable from π if there exist ψ1 : X n × {0, 1}l2 → K and ψ2 : Yn × {0, 1}l1 → K such

that K1 = ψ1(Xn,Π2), K2 = ψ2(Y n,Π1), and

P (K1 6= K2) ≤ ε, (17)

d(PK1
,Punif) ≤ δ, (18)

where Punif is the uniform distribution on K. The quantity log |K| denotes the length of the CR.

13For ease of presentation, we restrict to 2-rounds. Our approach easily extends to higher (but fixed) number of rounds.
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A rate pair (Rc, Rr) is (ε, δ)-achievable if, for all n sufficiently large, there exists a protocol π of

length |π| ≤ nRc that recovers an (ε, δ)-CR of length log |K| ≥ nRr. Let RCR(ε, δ|PXY ) be the closure

of the set of all (ε, δ)-achievable rate pairs. Define

RCR(PXY ) :=
⋂

0<ε,δ<1

RCR(ε, δ|PXY ).

The following characterization of RCR(PXY ) was given in [3]:

RCR(PXY ) =
{

(Rc, Rr) : ∃(U, V ) s.t. |U| ≤ |X |+ 1, |V| ≤ |X ||Y|+ 1, U −◦−X −◦− Y, V −◦− (Y, U)−◦−X

Rc ≥ I(U, V ∧X|Y ) + I(U, V ∧ Y |X), Rr ≤ I(U, V ∧X,Y )
}

The set RCR(PXY ) is closed and convex, and it can be expressed alternatively using tangent lines as

follows:

RCR(PXY ) =
⋂
µ≥0

{
(Rr, Rc) : Rr − µRc ≤ RµCR(PXY )

}
,

where

RµCR(PXY ) := max
{
I(U, V ∧X,Y )− µ

(
I(U, V ∧X|Y ) + I(U, V ∧ Y |X)

)
:

∃(U, V ) s.t. |U| ≤ |X |, |V| ≤ |X ||Y|, U −◦−X −◦− Y, V −◦− (Y,U)−◦−X
}
. (19)

As before, we circumvent the Markov chain conditions by using the following alternative form:

RµCR(PXY ) = inf
α>0

Rµ,αCR (PXY ), (20)

where (see Remark 1)

Rµ,αCR (PXY ) := max
PŨṼ X̃Ỹ

[
I(Ũ , Ṽ ∧ X̃, Ỹ )− µ

(
I(Ũ , Ṽ ∧ X̃|Ỹ ) + I(Ũ , Ṽ ∧ Ỹ |X̃)

)
− αD(PŨ Ṽ X̃Ỹ ‖QŨ Ṽ XY )−D(PŨ Ṽ |X̃Ỹ ‖PŨ |X̃PṼ |Ỹ Ũ |PX̃Ỹ )− 2µD(PX̃Ỹ ‖PXY )

]
= max

PŨṼ X̃Ỹ

[
I(Ũ , Ṽ ∧ X̃, Ỹ )− µ

(
I(Ũ , Ṽ ∧ X̃|Ỹ ) + I(Ũ , Ṽ ∧ Ỹ |X̃)

)
− (α+ 2µ)D(PX̃Ỹ ‖PXY )− (α+ 1)

(
I(Ũ ∧ Ỹ |X̃) + I(Ṽ ∧ X̃|Ỹ , Ũ)

)]
, (21)

and QŨ Ṽ XY = PṼ |Ũ Ỹ PŨ |X̃PXY is the distribution induced from each PŨ Ṽ X̃Ỹ . The ranges U and V of

Ũ and Ṽ can be restricted to |U| ≤ |X ||Y| and |V| ≤ |X |2|Y|2.

August 21, 2019 DRAFT



19

Theorem 8. For every n ∈ N, µ ≥ 0, and α > 0, we have

Rµ,αCR (PnXY ) ≤ nRµ,αCR (PXY ).

Corollary 9. For every 0 < ε, δ < 1 with ε+ δ < 1, we have RCR(ε, δ|PXY ) = RCR(PXY ).

Proof of Corollary 9: For a given protocol π and (ε, δ)-CR (K1,K2) satisfying (17) and (18), we

first replace the uniformity constraint (18) with a constraint on log-likelihood. Specifically, for a given

γ > 0, which will be specified later, let

Tγ :=

{
k ∈ K : log

1

PK1
(k)
≥ log |K| − γ

}
. (22)

Then, by (18) and the standard argument in the information-spectrum methods (cf. [21, Lemma 2.1.2]),

we have

δ ≥ d(PK1
,Punif)

≥ PK1

(
T cγ
)
− Punif

(
T cγ
)

≥ PK1

(
T cγ
)
− 2−γ . (23)

We now define the set D over which our CR generation protocol behaves ideally. Let

D :=
{

(xn, yn) : ψ1(xn, ϕ2(yn, ϕ1(xn))) ∈ Tγ , ψ1(xn, ϕ2(yn, ϕ1(xn))) = ψ2(yn, ϕ1(xn))
}
. (24)

By (17) and (23), for γ = log 2
1−ε−δ , we have

PnXY (D) ≥ 1− PK1

(
T cγ
)
− P (K1 6= K2)

≥ 1− ε− δ − 2−γ

=
1− ε− δ

2
. (25)

Denote by PX̃nỸ n the pmf

PX̃nỸ n (xn, yn) :=
PnXY (xn, yn)1[(xn, yn) ∈ D]

PnXY (D)
. (26)

Then, (25) implies

D(PX̃nỸ n‖P
n
XY ) = log

1

PnXY (D)

≤ log
2

1− ε− δ
. (27)
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Consider an execution of protocol π for input (X̃n, Ỹ n) ∼ PX̃nỸ n . Set Π̃1 = ϕ1(X̃n), Π̃2 = ϕ2(Ỹ n, Π̃1),

Π̃ = (Π̃1, Π̃2), K̃1 = ψ1(X̃n, Π̃2), and K̃2 = ψ2(Ỹ n, Π̃1). Note that K̃1 = K̃2 with probability 1.

Furthermore, since the support of PK̃1
satisfies supp(PK̃1

) ⊆ Tγ , we have

PK̃1
(k) =

1

PnXY (D)

∑
(xn,yn)∈D:

ψ1(xn,ϕ2(yn,ϕ1(xn)))=k

PnXY (xn, yn)

≤ PK1
(k)

PnXY (D)

≤ 2γ

PnXY (D)|K|
,

for every k ∈ supp(PK̃1
). Thus, we get

Hmin(PK̃1
) = min

k∈supp(PK̃1
)
log

1

PK̃1
(k)

≥ log |K| − 2 log
2

1− ε− δ
,

where we used (25) once again in the inequality.

By noting Hmin(PK̃1
) ≤ H(K̃1), we have

n(Rr − µRc)− 2 log
2

1− ε− δ
≤ log |K| − µ|π| − 2 log

2

1− ε− δ

≤ H(K̃1)− µH(Π̃)

≤ H(Π̃, K̃1)− µ
(
H(Π̃|X̃n) +H(Π̃|Ỹ n)

)
= H(Π̃, K̃2)− µ

(
H(Π̃, K̃2|X̃n) +H(Π̃, K̃2|Ỹ n)

)
≤ I(Π̃, K̃2 ∧ X̃n, Ỹ n)− µ

(
I(Π̃, K̃2 ∧ X̃n|Ỹ n) + I(Π̃, K̃2 ∧ Ỹ n|X̃n)

)
≤ I(Π̃, K̃2 ∧ X̃n, Ỹ n)− µ

(
I(Π̃, K̃2 ∧ X̃n|Ỹ n) + I(Π̃, K̃2 ∧ Ỹ n|X̃n)

)
− (α+ 1)

(
I(Π̃1 ∧ Ỹ n|X̃n) + I(Π̃2, K̃2 ∧ X̃n|Ỹ n, Π̃1)

)
− (α+ 2µ)D(PX̃nỸ n‖P

n
XY ) + (α+ 2µ) log

2

1− ε− δ

≤ Rµ,αCR (PnXY ) + (α+ 2µ) log
2

1− ε− δ
,

where we used a well-known property of interactive communication in the third inequality (eg. see [33,

Eq. (3.2)]); the identity follows from the fact that K̃1 and K̃2 are recoverable perfectly from (X̃n, Π̃) and

(Ỹ n, Π̃), respectively, and K̃1 = K̃2 with probability 1; and we used the fact that costs I(Π̃1 ∧ Ỹ n|X̃n)

and I(Π̃2, K̃2∧ X̃n|Ỹ n, Π̃1) are both 0 and (27) in the fifth inequality; in the last inequality, we regarded
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Π̃1 and (Π̃2, K̃2) as Ũ and Ṽ , respectively. Finally, by applying Theorem 8, we have

Rr − µRc ≤ Rµ,αCR (PXY ) +
(α+ 2µ+ 2)

n
log

2

1− ε− δ
,

which together with (20) imply the strong converse.

Proof of Theorem 8: First note that we can expand

I(Ũ , Ṽ ∧ X̃n, Ỹ n) = I(Ũ ∧ X̃n) + I(Ṽ ∧ Ỹ n|Ũ) + I(Ũ ∧ Ỹ n|X̃n) + I(Ṽ ∧ X̃n|Ỹ n, Ũ).

Then, by setting

G1(PX̃nỸ n) := H(X̃n)− µ
[
H(X̃n|Ỹ n) +D(PX̃nỸ n‖P

n
XY )

]
− (α+ µ)

[
H(Ỹ n|X̃n) +D(PX̃nỸ n‖P

n
XY )

]
and

G2(PŨ Ṽ X̃nỸ n) := −H(X̃n|Ũ) + I(Ṽ ∧ Ỹ n|Ũ) + µ
(
H(X̃n|Ỹ n, Ũ , Ṽ ) +H(Ỹ n|X̃n, Ũ , Ṽ )

)
+ α

(
H(Ỹ n|X̃n, Ũ)− I(Ṽ ∧ X̃n|Ỹ n, Ũ)

)
for given PŨ Ṽ X̃nỸ n , we can write

Rµ,αCR (PnXY ) = max
PŨṼ X̃nỸ n

[
G1(PX̃nỸ n) +G2(PŨ Ṽ X̃nỸ n)

]
.

Fix arbitrary PŨ Ṽ X̃nỸ n . By noting H(X̃n) ≤ nH(X̃J) and by using Proposition 1, we get

G1(PX̃nỸ n) ≤ nG1(PX̃J ỸJ ), (28)

where J is distributed uniformly over {1, . . . , n}. For G2(PŨ Ṽ X̃nỸ n), by using (4), we have

−H(X̃n|Ũ) + I(Ṽ ∧ Ỹ n|Ũ) = H(Ỹ n|Ũ)−H(X̃n|Ũ)−H(Ỹ n|Ũ , Ṽ )

≤ n
[
H(ỸJ |ŨJ , J)−H(X̃J |ŨJ , J)−H(ỸJ |ŨJ , J, Ṽ )

]
,

where Ũj = (Ũ , X̃−j , Ỹ
+
j ). Also,

H(X̃n|Ỹ n, Ũ , Ṽ ) +H(Ỹ n|X̃n, Ũ , Ṽ ) ≤ n
(
H(X̃J |ỸJ , ŨJ , J, Ṽ ) +H(ỸJ |X̃J , ŨJ , J, Ṽ )

)
.

Furthermore, by using (4) once more, we obtain

H(Ỹ n|X̃n, Ũ)− I(Ṽ ∧ X̃n|Ỹ n, Ũ) = H(Ỹ n|Ũ)−H(X̃n|Ũ) +H(X̃n|Ỹ n, Ũ , Ṽ )

≤ n
(
H(ỸJ |ŨJ , J)−H(X̃J |ŨJ , J) +H(X̃J |ỸJ , ŨJ , J, Ṽ )

)
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= n
(
H(ỸJ |X̃J , ŨJ , J)− I(Ṽ ∧ X̃J |ỸJ , ŨJ , J)

)
.

Upon combining the bounds above, we obtain

G2(PŨ Ṽ X̃nỸ n) ≤ nG2(PŨJJṼ X̃J ỸJ ). (29)

Since (28) and (29) hold for arbitrary PŨ Ṽ X̃nỸ n , the proof is complete.

Remark 3. When randomization is allowed, the achievable region is given by

R̃CR(PXY ) =
{

(Rc, Rr) : ∃ t ≥ 0 s.t. (Rc − t, Rr − t) ∈ RCR(PXY )
}
.

We can extend the proof above to randomized protocols easily by appending two independent i.i.d.

sources An and Bn (taking values in sufficiently large alphabets A and B) to Xn and Y n, respectively.

By Corollary 9 we obtain RCR(ε, δ|PXAY B) = RCR(PXAY B). Also, noting that (cf. [3])

⋃
PAB

RCR(PXAY B) = R̃CR(PXY ),

where the union is taken over all distributions such that A and B are independent, we have the strong

converse even with randomized protocols. A similar approach has been pursued in [40, proof of Theorem

III.2] to handle randomization.

B. Secret Key Agreement

Next, we consider the secret key agreement problem. The formulation and analysis is very similar to

the common randomness generation problem; we only highlight the differences. Specifically, an (ε, δ)-SK

(K1,K2) recoverable from a protocol π is an (ε, δ)-CR with the uniformity condition (18) replaced by

the secrecy condition

d(PK1Π,Punif × PΠ) ≤ δ. (30)

An (ε, δ)-achievable secret key rate pair (Rc, Rs) and the rate regions RSK(ε, δ|PXY ) and RSK(PXY )

are defined exactly as before. The following characterization of RSK(PXY ) was given in [42]:

RSK(PXY ) =
{

(Rc, Rs) : ∃(U, V ) s.t. |U| ≤ |X |+ 1, |V| ≤ |X ||Y|+ 1, U −◦−X −◦− Y, V −◦− (Y, U)−◦−X

Rc ≥ I(U, V ∧X|Y ) + I(U, V ∧ Y |X),

Rs ≤ I(U, V ∧X,Y )− I(U, V ∧X|Y )− I(U, V ∧ Y |X)
}
.
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Define RµSK(PXY ) and Rµ,αSK (PXY ) analogously to (19) and (21), respectively. Then, it can be easily

verified that

RµSK(PXY ) = Rµ+1
CR (PXY ),

Rµ,αSK (PXY ) = Rµ+1,α
CR (PXY ).

Thus, Theorem 8 can be rewritten as follows.

Theorem 10. For every n ∈ N, µ ≥ 0, and α > 0, we have

Rµ,αSK (PnXY ) ≤ nRµ,αSK (PXY ).

Furthermore, by using Theorem 10, we have the following strong converse theorem.

Corollary 11. For every 0 < ε, δ < 1 with ε+ δ < 1, we have RSK(ε, δ|PXY ) = RSK(PXY ).

Proof of Corollary 11: The proof is mostly the same as the proof of Corollary 9; we only highlight

the modifications required. Instead of the set defined by (22), we consider

Tγ :=

{
(k, τ) : log

1

PK1|Π (k|τ)
≥ log |K| − γ

}
.

We can verify that

δ ≥ PK1Π

(
T cγ
)
− 2−γ .

In place of (24), define the set D as

D :=
{

(xn, yn) : (ψ1(xn, ϕ2(yn, ϕ1(xn))), ϕ1(xn), ϕ2(yn, ϕ1(xn))) ∈ Tγ ,

ψ1(xn, ϕ2(yn, ϕ1(xn))) = ψ2(yn, ϕ1(xn))
}
.

Then, for the changed measure (26), we recover the bound (27). Also,

Hmin(PK̃1Π̃|PΠ̃) := min
(k,τ)∈supp(PK̃1Π̃)

log
1

PK̃1|Π̃ (k|τ)

≥ log |K| − 2 log
2

1− ε− δ
.

Therefore, upon noting Hmin(PK̃1Π̃|PΠ̃) ≤ H(K̃1|Π̃), we obtain

n(Rs − µRc)− 2 log
2

1− ε− δ
≤ H(K̃1|Π̃)− µH(Π̃)
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= H(Π̃, K̃1)− (µ+ 1)H(Π̃)

≤ Rµ,αSK (PnXY ) + (α+ 2µ+ 2) log
2

1− ε− δ
.

Finally, the strong converse follows from Theorem 10.

VI. WIRETAP CHANNEL

A wiretap channel code enables reliable transmission of a message over a noisy channel while keeping

it secure from an eavesdropper who can see another noisy version of transmissions. Formally, given a

discrete memoryless channel (DMC) W : X → Y × Z , an (N,n, ε, δ)-wiretap code for W consists

of a (possibly randomized) encoder ϕ : {1, ..., N} → X n and a decoder ψ : Yn → {1, ..., N} such

that when a message M distributed uniformly over {1, ..., N} is transmitted over the channel as Xn =

ϕ(M), the estimate M̂ = ψ(Y n) has probability of error satisfying P(M̂ 6= M) ≤ ε and leakage

d(PMZn ,PM × PZn) ≤ δ.

A rate R > 0 is (ε, δ)-achievable if there exists an (b2nRc, n, ε, δ)-wiretap code for all n sufficiently

large. The (ε, δ)-wiretap capacity Cs(ε, δ|W ) is the supremum over all (ε, δ)-achievable rates. The wiretap

capacity Cs(W ) is the infimum of Cs(ε, δ|W ) over all ε, δ ∈ (0, 1). The following characterization of

Cs(W ) was derived in [10]:

Cs(W ) = max
PUXYZ :

PY Z|XU=W

[
I(U ∧ Y )− I(U ∧ Z)

]
,

where the cardinality |U| of U can be restricted to be |U| ≤ |X |. Using Proposition 3, the expression on

the right above can be written alternatively as14

Cs(W ) = inf
α>0

Cαs (W ), (31)

where

Cαs (W ) = max
PŨX̃Ỹ Z̃

[
I(Ũ ∧ Ỹ )− I(Ũ ∧ Z̃)− αD(PỸ Z̃|X̃Ũ‖W |PX̃Ũ )

]
,

where the cardinality |U| of U can be restricted to be |U| ≤ |X ||Y||Z|. The next theorem shows that the

quantity Cαs (W ) satisfies the required sub-additivity property.

Theorem 12. Consider a DMC W : X → Y × Z such that W (y, z|x) = W1(y|x)W2(z|x). For every

n ∈ N and α > 0,

C2α
s (Wn) ≤ nCαs (W ).

14The proof of (31) is very similar to that of other variational formulae such as (7) and is omitted.
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As a corollary, we obtain the strong converse for wiretap channel.15

Corollary 13. For every 0 < ε, δ < 1 with ε+ δ < 1, we have Cs(ε, δ|W ) = Cs(W ).

Proof of Corollary 13: Consider an (N,n, ε, δ)-wiretap code with a randomized encoder ϕ and (de-

terministic) decoder ψ . Note that without loss of generality we may assume W (y, z|x) = W1(y|x)W2(z|x)

since the error and secrecy criterion, respectively, depend only on the marginals (Xn, Y n) and (Xn, Zn).

The first step in our proof is to convert the average probability of error and secrecy requirements to a

worst-case version. Specifically, since

ε+ δ ≥ P(M̂ 6= M) + d(PMZn ,PM × PZn)

=
1

N

N∑
m=1

[
P(M̂ 6= m|M = m) + d(PZn|M=m,PZn)

]
,

there exists a subset M′ of size |M′| ≥ (1− ε− δ)N/(1 + ε+ δ) such that for every message m ∈M′,

P(M̂ 6= m|M = m) + d(PZn|M=m,PZn) ≤ 1 + ε+ δ

2
.

For m ∈M′, consider the sets

Am = {yn : ψ(yn) = m}

and, for γ > 0 specified later,

Bm =

{
zn : log

PZn|M (zn|m)

PZn (zn)
≤ γ

}
.

The set Bm denotes, roughly, the set of observations that do not reveal much information to the wiretapper

about the message m – the wiretapper cannot distinguish reliably if the observation was generated from

PZn|M=m or from PZn . By the standard argument in the information-spectrum methods (cf. [21]), the

set Bm satisfies

PZn (Bcm) ≤ 2−γ .

Furthermore, from the definition of the total variation distance, we further have

PZn|M=m (Bcm) ≤ 2−γ + d(PZn|M=m,PZn)

15We remark that we consider strong converse for the wiretap channel only when information leakage is measured by
d(PMZn ,PM × PZn), and not for other measures of secrecy such as those considered in [7].
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for every m ∈M′. Therefore, upon choosing 2−γ = (1− ε− δ)/4, we have

P (Y n ∈ Am, Zn ∈ Bm|M = m) ≥ 1− PY n|M=m (Acm)− PZn|M=m (Bcm)

≥ 1− ε− δ
4

for every m ∈M′. Denote η = 1− (1− ε− δ)/4 and by Cm the set of xn ∈ supp(PXn|M=m) such that

P (Y n ∈ Am, Zn ∈ Bm|Xn = xn) ≥ 1−√η, (32)

which satisfies

P (Xn ∈ Cm|M = m) ≥ 1−√η (33)

by the reverse Markov inequality. We now define our modified random variables for which the code

is perfectly error-free and has a small leakage of information to the wiretapper; however, unlike the

original random variables satisfying the Markov constraint M −◦−Xn −◦− (Y n, Zn), the modified random

variables do not satisfy the Markov constraint (see also Remark 4). Specifically, consider random variables

(Ũ , X̃n, Ỹ n, Z̃n) such that Ũ is uniformly distributed on M′, and

PX̃n|Ũ (xn|m) =
PXn|M (xn|m)1[xn ∈ Cm]

PXn|M (Cm|m)
;

PỸ nZ̃n|X̃nŨ (yn, zn|xn,m) =
PY nZn|Xn (yn, zn|xn)1[yn ∈ Am, zn ∈ Bm]

PY nZn|Xn (Am × Bm|xn)
, ∀xn ∈ Cm.

Using the conditional independence assumption W (y, z|x) = W1(y|x)W2(z|x), we further get that

PỸ nZ̃n|X̃nŨ (yn, zn|xn,m) =
PY n|Xn (yn|xn)1[yn ∈ Am]

PY n|Xn (Am|xn)
·

PZn|Xn (zn|xn)1[zn ∈ Bm]

PZn|Xn (Bm|xn)
,

whereby

PZ̃n|X̃nŨ (zn|xn,m) =
PZn|Xn (zn|xn)1[zn ∈ Bm]

PZn|Xn (Bm|xn)
. (34)

Since Ũ = ψ(Ỹ n) with probability 1, we get

logN − log
2

1− ε− δ
≤ log |M′| ≤ I(Ũ ∧ Ỹ n). (35)

To bound the leakage I(Ũ ∧ Z̃n), note that

I(Ũ ∧ Z̃n) +D(PZ̃n‖PZn) = E
[

log
PZ̃n|Ũ (Z̃n|Ũ)

PZn(Z̃n)

]

August 21, 2019 DRAFT



27

≤ max
m∈M′,zn∈Bm

log
PZ̃n|Ũ (zn|m)

PZn (zn)

≤ log
4

1− ε− δ
+ max
m∈M′,zn∈Bm

log
PZ̃n|Ũ (zn|m)

PZn|M (zn|m)
,

where the previous inequality uses the definition of Bm and γ = log 4
1−ε−δ . For the second term on the

right-side above, for every zn ∈ Bm it holds that

PZ̃n|Ũ (zn|m)

PZn|M (zn|m)
=

∑
xn∈Cm PX̃n|Ũ (xn|m) PZ̃n|X̃nŨ (zn|xn,m)∑
x′n∈Xn PXn|M (x′n|m) PZn|Xn (zn|x′n)

≤
∑

xn∈Cm PX̃n|Ũ (xn|m) PZ̃n|X̃nŨ (zn|xn,m)∑
x′n∈Cm PXn|M (x′n|m) PZn|Xn (zn|x′n)

=

∑
xn∈Cm PXn|M (xn|m) PZn|Xn (zn|xn) /{PXn|M (Cm|m) PZn|Xn (Bm|xn)}∑

x′n∈Cm PXn|M (x′n|m) PZn|Xn (zn|x′n)

≤ 1

(1−√η)2
,

where the second equality uses (34) and the final inequality is by (32) and (33). Using the bounds above,

we get

I(Ũ ∧ Z̃n) ≤ log
4

1− ε− δ
+ 2 log

1

1−√η
.

Combining this bound with (35), for every α > 0 and with

∆(ε, δ) = 2 log
1

1− ε− δ
+ 2 log

1

1−
√

1− (1− ε− δ)/4
+ 3,

we get

logN ≤ I(Ũ ∧ Ỹ n)− I(Ũ ∧ Z̃n) + ∆(ε, δ)

≤ C2α
s (Wn) + 2αD(PỸ nZ̃n|X̃nŨ‖W

n|PX̃nŨ ) + ∆(ε, δ)

≤ nCαs (W ) + 2αD(PỸ nZ̃n|X̃nŨ‖W
n|PX̃nŨ ) + ∆(ε, δ), (36)

where the final bound uses Theorem 12. It only remains to bound the divergence term on the right-side

above. To that end, note

D(PỸ nZ̃n|X̃nŨ‖W
n|PX̃nŨ ) =

∑
xn,m

PX̃nŨ (xn,m) log
1

PY nZn|Xn (Am × Bm|xn)

≤ log
1

1−√η
,
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where we have used the fact that support of PX̃n|Ũ=m is Cm and (32). This bound along with (36) yields

logN ≤ nCα(W ) + 2 log
1

1− ε− δ
+ (2α+ 2) log

1

1−
√

1− (1− ε− δ)/4
+ 3,

which yields the strong converse by (31).

Remark 4. Unlike the standard choice of auxiliary random variable in the wiretap channel, the random

variables (Ũ , X̃n, Ỹ n, Z̃n) in the above proof do not satisfy the Markov relation Ũ −◦− X̃n −◦− (Ỹ n, Z̃n).

Instead, we have added the cost D(PỸ nZ̃n|X̃nŨ‖W
n|PX̃nŨ ).

Proof of Theorem 12: For any distribution PŨX̃nỸ nZ̃n , note first that (see [12, Lemma 17.12])

I(Ũ ∧ Ỹ n)− I(Ũ ∧ Z̃n) = n[I(Ũ ∧ ỸJ |VJ , J)− I(Ũ ∧ Z̃J |VJ , J)], (37)

where J is distributed uniformly over {1, ..., n} and Vj = (Ỹ −j , Z̃
+
j ). Next, consider

D(PỸ nZ̃n|X̃nŨ‖W
n|PX̃nŨ ) = D(PỸ n|X̃nŨ‖W

n
1 |PX̃nŨ ) +D(PZ̃n|Ỹ nX̃nŨ‖W

n
2 |PỸ nX̃nŨ ). (38)

The first term on the right is bounded below by

D(PỸ n|X̃nŨ‖W
n
1 |PX̃nŨ )−D(PZ̃n|X̃nŨ‖W

n
2 |PX̃nŨ )

= E
[

log
Wn

2 (Z̃n|X̃n)

Wn
1 (Ỹ n|X̃n)

]
+H(Z̃n|X̃n, Ũ)−H(Ỹ n|X̃n, Ũ)

=

n∑
j=1

[
E
[

log
W2(Z̃j |X̃j)

W1(Ỹj |X̃j)

]
+H(Z̃j |X̃n, Ũ , Vj)−H(Ỹj |X̃n, Ũ , Vj)

]

=

n∑
j=1

[
D(PỸj |X̃nŨVj

‖W1|PX̃nŨVj
)−D(PZ̃j |X̃nŨVj

‖W2|PX̃nŨVj
)

]
,

where the second equality follows from (4). For the second term on the right-side of (38), we have

D(PZ̃n|Ỹ nX̃nŨ‖W
n
2 |PỸ nX̃nŨ ) =

n∑
j=1

D(PZ̃j |Z̃+
j Ỹ

nX̃nŨ‖W2|PZ̃+
j Ỹ

nX̃nŨ )

≥
n∑
j=1

D(PZ̃j |X̃nŨVj
‖W2|PX̃nŨVj

),

where the inequality uses the convexity of D(P‖Q) in (P,Q). Using these bounds with (38), it follows

that

D(PỸ nZ̃n|X̃nŨ‖W
n|PX̃nŨ ) ≥

n∑
j=1

D(PỸj |X̃nŨVj
‖W1|PX̃nŨVj

)
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≥
n∑
j=1

D(PỸj |X̃jŨVj‖W1|PX̃jŨVj )

= nD(PỸJ |X̃J ŨVJJ‖W1|PX̃J ŨVJJ). (39)

Also,

D(PỸ nZ̃n|X̃nŨ‖W
n|PX̃nŨ ) ≥ D(PZ̃n|Ỹ nX̃nŨ‖W

n
2 |PỸ nX̃nŨ )

=

n∑
j=1

D(PZ̃j |Z̃+
j Ỹ

nX̃nŨ‖W2|PZ̃+
j Ỹ

nX̃nŨ )

≥
n∑
j=1

D(PZ̃j |ỸjX̃jŨVj‖W2|PỸjX̃jŨVj )

= nD(PZ̃J |ỸJX̃J ŨVJJ‖W2|PỸJX̃J ŨVJJ). (40)

The bounds (39) and (40) yield

2D(PỸ nZ̃n|X̃nŨ‖W
n|PX̃nŨ ) ≥ nD(PỸJ Z̃J |X̃J ŨVJJ‖W |PX̃J ŨVJJ).

Consequently, we have

I(Ũ ∧ Ỹ n)− I(Ũ ∧ Z̃n)− 2αD(PỸ nZ̃n|X̃nŨ‖W
n|PX̃nŨ )

≤ n
[
I(Ũ ∧ ỸJ |VJ , J)− I(Ũ ∧ Z̃J |VJ , J)− αD(PỸJ Z̃J |X̃J ŨVJJ‖W |PX̃J ŨVJJ)

]
≤ nCαs (W ),

where, in the last inequality, we removed (VJ , J) by taking the maximum over realizations of (VJ , J).

Since PŨX̃nỸ nZ̃n is arbitrary, the proof is completed.

VII. DISCUSSION

Our proofs of strong converse have followed a common recipe where an important step is to establish

the super-additivity and sub-additivity, respectively, of the lower and upper bounds involving the changed

measure. To facilitate this, we have used appropriately crafted variational formulae for these bounds

which allowed us to establish the desired additivity properties. These results, Theorem 4, Theorem 6,

Theorem 8, Theorem 10, and Theorem 12, along with Proposition 1 may be of independent interest.

We restricted our treatment to the case of random variables taking finitely many values. But this

assumption was used only to establish the variational formulae (7), (14), (20), and (31), and our results

will hold whenever these formulae can be established. In particular, a technical difficulty in generalizing
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these formulae is to replace the use of uniform continuity of the information quantities in our proofs

with suitable conditions. We only need this in the neighborhood of product distributions; we have not

pursued generalization in this direction in the current paper, but techniques we develop can be applied

to more general distributions. Regarding continuous channels, the strong converse theorems were proved

in [14], [15], [16] for the Gaussian multiple access channel, the Gaussian broadcast channel, and some

class of Gaussian networks.

An intriguing direction of research is if the change of measure argument can be used to derive

second-order converse bounds, namely extending the results of [25], [38] to the multiterminal setting. For

centralized coding problems, such as the Gray-Wyner network, an application of the argument in [19]

(namely, the change of measure argument without introducing penalty terms) to each type class leads to

the exact second-order converse bound (cf. [46], [52]). A difficulty for distributed coding problems is the

evaluation of the variational formulae; to derive second-order bounds, we need to take the limit of block

length n and the multiplier α simultaneously. Recently, following-up on an early version of this paper,

an evaluation method for the variational formulae was developed in [36] which used the bound in (10)

to derive a second-order converse bound for the Wyner-Ziv problem.

The strong converse claim considered in this paper is that the capacity remains unchanged even if a

constant error 0 < ε < 1 is allowed. A stronger notion of strong converse, termed the exponential strong

converse or Arimoto converse, requires that the error converges to 1 exponentially rapidly when the rate

exceeds the capacity [6]. In fact, our proofs give exponential strong converses as well. For instance, in

the lossy source coding with side-information, by setting ε = 1 − 2−ξn in the final bound (10) of the

proof of Corollary 5, we can show that any code with excess distortion probability less than 1 − 2−ξn

must satisfy

R+ µD ≥ Rµ,αWZ (PXY )− (α+ 1)ξ. (41)

Suppose that R+ µD ≤ RµWZ(PXY )− 2ν for some ν > 0. The variational formula (7) implies that there

exists sufficiently large α such that RµWZ(PXY ) ≤ Rµ,αWZ (PXY ) + ν. Thus, if we take ξ so that ξ < ν
α+1 ,

then (41) is violated, which implies that the excess distortion probability must be larger than 1− 2−ξn.

However, the above argument does not give an explicit lower bound for the exponent of the convergence

speed. Such an explicit bound has been derived recently by Oohama for certain multiterminal problems

(cf. [35], [34]).

Another interesting problem, which we have not considered, is that of the multiple access channel

(MAC). The strong converse for MAC was established in [13], [1] using a technical tool called the
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“wringing lemma.” While we can recast the proof of [13], [1] in our change of measure language, but it

does not offer any extra insight. In particular, we cannot circumvent the wringing lemma and simplify

the proof of [13], [1]; indeed, it is of interest to simplify this opaque and technical proof.

Finally, it is of interest to examine the applicability of our strong converse proof recipe to problems

studied in other fields. One such instance was recently demonstrated in [44] where this recipe was used

to provide an alternative proof for the multiprover nonsignaling parallel repetition theorem, an important

result in theoretical computer science and physics.

Even though we have illustrated the utility of our recipe only for several representative problems,

we believe that this recipe provides strong converse theorems for any problems as long as single-letter

characterizations of the optimal rates under weak converse are known. An interesting future direction will

be an application of this change-of-measure argument to problems such that single-letter characterizations

of weak converse are unknown. A partial attempt for this problem was made in [20] for centralized coding

problems.16 A research in such a direction will establish a folklore in information theory: Strong converse

holds for any stationary memoryless system.

APPENDIX

A. Proof of variational formaula (7)

The proof is almost the same as the proof of Proposition 2. Clearly, the left-side is greater than or

equal to the right-side. To prove the other direction, for each α > 0, let Pα
ŨX̃Ỹ Z̃

be the minimizer for the

inner minimum on the right-side, and let Qα
ŨXY Z̃

= Pα
Z̃|Ũ Ỹ Pα

Ũ |X̃PXY be the induced distribution. Since

G(PŨX̃Ỹ Z̃) = I(Ũ ∧ X̃|Ỹ ) + E[d(X̃, Z̃)] is nonnegative and bounded above by a = log |X |+Dmax, it

must hold that D(Pα
ŨX̃Ỹ Z̃

‖Qα
ŨXY Z̃

) ≤ (a/α).

Furthermore, since G(PŨX̃Ỹ Z̃) is uniformly continuous, there exists a function ∆(t) satisfying ∆(t)→

0 as t→ 0 such that

Rµ,αWZ (PXY ) ≥ G(Pα
ŨX̃Ỹ Z̃

)

≥ G(Qα
ŨXY Z̃

)−∆(a/α)

≥ RµWZ(PXY )−∆(a/α).

Thus, we obtain the desired inequality by taking α→∞, which completes the proof.

16Instances of strong converses for problems with unknown single-letter characterization of the optimal rate are available; see
[2], [28]. Both these results apply the blowing-up lemma in a non-trivial manner.
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B. Proof of variational formula (14)

The proof mimics the one above, but has been included for completeness. As before, it is easy to see

that the left-side is greater than or equal to the right-side. For the other direction, for each α > 0, let

Pα
ŨṼ X̃Ỹ

be the minimizer for the inner minimum on the right-side, and let Qα
ŨṼ XY

= Pα
Ṽ |Ũ Ỹ Pα

Ũ |X̃PXY

be the induced distribution. Since G(PŨ Ṽ X̃Ỹ ) = I(Ũ , Ṽ ∧ X̃|Ỹ ) + I(Ũ , Ṽ ∧ Ỹ |X̃) is nonnegative and

bounded above by a = log |X ||Y|, it must hold that

D(Pα
ŨṼ X̃Ỹ

‖Qα
ŨṼ XY

) ≤ a

α
(42)

and17

HPα(F̃ |Ỹ , Ũ) ≤ a

α
, HPα(F̃ |X̃, Ũ , Ṽ ) ≤ a

α
. (43)

Using the compactness of the finite dimensional probability simplex, there exists a subsequence

{Qαi
Ũ Ṽ XY

}∞i=1 of {Qα
ŨṼ XY

}α∈N that converges to Q∗
Ũ Ṽ XY

. By uniform continuity of the entropy, (42)

and (43) imply that the limit point Q∗
Ũ Ṽ XY

satisfies HQ∗(F |Y, Ũ) = HQ∗(F |X, Ũ , Ṽ ) = 0. Furthermore,

since G(PŨ Ṽ X̃Ỹ ) is also uniform continuous, there exists a function ∆(t) satisfying ∆(t)→ 0 as t→ 0

such that

Rαif (PXY ) ≥ G(Pαi
Ũ Ṽ X̃Ỹ

)

≥ G(Qαi
Ũ Ṽ XY

)−∆(a/αi).

Thus, by taking the limit i→∞, we have

sup
α>0

Rαf (PXY ) ≥ G(Q∗
Ũ Ṽ XY

)

≥ Rf (PXY ),

which completes the proof.

C. Proof of variational formula (20)

The proof is a minor variant of those of (7) and (14). We only need to observe that the function

G(PŨ Ṽ X̃Ỹ ) = I(Ũ , Ṽ ∧X̃, Ỹ )−µ
(
I(Ũ , Ṽ ∧X̃|Ỹ )+I(Ũ , Ṽ ∧Ỹ |X̃)

)
is bounded above by a = log |X ||Y|

and below by b = −µ log |X ||Y|. With this observation, the same arguments go through.

17We have put the subscripts in (43) to emphasize the underlying measure.
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IEEE Trans. Inf. Theory, vol. 63, no. 12, pp. 7737–7746, Dec. 2017.

[16] ——, “Strong converse theorems for multimessage networks with tight cut-set bound,” Problems of Information

Transmission, vol. 55, no. 1, pp. 67–100, April 2019.

[17] E. Graves and T. Wong, “Wiretap channel capacity: Secrecy criteria, strong converse, and phase change,” Proc. IEEE

International Symposium on Information Theory, 2017, arXiv:1701.07347.

[18] R. M. Gray and A. D. Wyner, “Source coding for a simple network,” Bell Labs. Technical Journal, vol. 53, no. 9, pp.

1681–1721, November 1974.

[19] W. Gu and M. Effros, “A strong converse for a collection of network source coding problem,” Proc. IEEE International

Symposium on Information Theory, pp. 2316–2320, 2009.

[20] ——, “A strong converse in source coding for super-source networks,” Proc. IEEE International Symposium on Information

Theory, pp. 395–399, 2011.

August 21, 2019 DRAFT



34

[21] T. S. Han, Information-Spectrum Methods in Information Theory [English Translation]. Series: Stochastic Modelling and

Applied Probability, Vol. 50, Springer, 2003.

[22] E. A. Haroutunian, “Bounds on the error probability exponent for semicontinuous memoryless channels,” Prob. Pered.

Inform., vol. 4, no. 4, pp. 37–48, 1968, in Russian.

[23] M. Hayashi, H. Tyagi, and S. Watanabe, “Strong converse for a degraded wiretap channel via active hypothesis testing,”

Proc. Conference on Communication, Control, and Computing (Allerton), 2014.

[24] ——, “Secret key agreement: General capacity and second-order asymptotics,” IEEE Trans. Inf. Theory, vol. 62, no. 7,

pp. 3796–3810, July 2016.

[25] M. Hayashi, “Information spectrum approach to second-order coding rate in channel coding,” IEEE Trans. Inf. Theory,

vol. 55, no. 11, pp. 4947–4966, Novemeber 2009.

[26] S. T. Jose and A. A. Kulkarni, “Linear programming-based converse for finite blocklength lossy joint source-channel

coding,” IEEE Trans. Inf. Theory, vol. 63, no. 11, pp. 7066–7094, November 2017.

[27] ——, “Improved finite blocklength converses for Slepian-Wolf coding via linear programming,” IEEE Trans. Inf. Theory,

vol. 65, no. 4, pp. 2423–2441, April 2019.

[28] O. Kosut and J. Kliewer, “Strong converses are just edge removal properties,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp.

3315–3339, June 2019.

[29] J. Liu, “Dispersion bound for the Wyner-Ahlswede-Körner network via reverse hypercontractivity on types,” Proc. IEEE

International Symposium on Information Theory, pp. 1854–1858, 2018.
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