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Abstract—We consider a two-party distributed hypothesis
testing problem for correlated Gaussian random variables. For a
d-dimensional random vector X and a scalar random variable Y ,
where X and Y are jointly Gaussian with an unknown correlation
vector ρ, parties P1 and P2 observe independent copies of X
and Y , respectively. The parties seek to test if their observations
are correlated or not, namely they seek to test if ‖ρ‖2 exceeds
τ or is it 0. To that end, they communicate interactively and
declare the test output. We show that roughly order d/τ2 bits
of communication are sufficient and necessary for resolving the
distributed correlation testing problem above. Furthermore, we
establish a lower bound of roughly d2/τ2 bits for the commu-
nication needed for distributed estimation of ρ, implying that
distributed correlation testing requires less communication than
distributed estimation. Both our lower bounds for testing and
estimation hold for an arbitrary d and interactive communication
with shared randomness, while our distributed test requires
only one-way communication with shared randomness. For the
one-dimensional case, with one-way communication and with
probability of one of the error-types fixed, our bounds are more
refined in the dependence on the other error-type and are tight
even in the constant.

Index Terms—Gaussian correlation, high-dimensional statis-
tics, hypercontractivity, hypothesis testing, interactive communi-
cation.

I. INTRODUCTION

Parties P1 and P2 observe jointly Gaussian random vari-
ables Xn and Y n, respectively, comprising independent and
identically distributed (i.i.d.) samples (Xt, Yt), 1 ≤ t ≤ n,
with Xt ∈ Rd, Yt ∈ R, and such that E [Y1 | X1] = ρTX1.
They communicate with each other to determine if their
observations are correlated, i.e., to test if ‖ρ‖2 ≥ τ or
‖ρ‖2 = 0. For a given probability of error requirement and an
arbitrary large n, what is the minimum communication needed
between the parties? (See Section II for a formal description.)

This problem of distributed correlation testing is an instance
of a distributed hypothesis testing problem and it has been
studied for several decades in the information theory literature
starting with the seminal work [6] and closely followed
by [33]. Most formulations in this literature focus on the
tradeoff between the error exponent and communication rate
per sample for simple binary hypothesis testing problems;
see [22] for a survey. We remark that our setting differs from
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these earlier settings since we consider a composite hypothesis
testing problem. Furthermore, we do not focus on the error
exponent and allow arbitrarily large number of samples n. In
particular, the error exponent can be shown to be 0 when we
restrict to communication of rate 0 (cf. [30]), which is an
allowed regime for us since we can take as many samples as
we like to minimize the communication.

The problem of distributed independence testing with mul-
tiple rounds of interactive communication is studied in [38],
[39]. Similar problems with more general hypotheses or more
elaborate communication models are considered in [40], [37],
[23], [31]. The error exponent for the conditional indepen-
dence testing problem is studied in [28], where both upper
and lower bound for it are obtained. In another recent line of
work [32], strong converse for testing against independence
over a noisy channel is obtained using the technique in [36].
Recently, and subsequent to the publication of the initial
version [29] of this paper, related problems were considered in
various works. In [20], an improved upper bound on the error
exponent for testing between two known positive Gaussian
correlations is provided. The communication complexity of
estimating one-dimensional Gaussian correlations is estab-
lished in [19] and that of independence testing over discrete
alphabet in the large sample regime is characterized in [9]. The
tradeoff between communication complexity and sample com-
plexity for detecting pairwise correlations is studied in [15].
A related line of recent work considers composite hypothesis
testing under communication, privacy, and shared randomness
constraints [3], [4], [1], [2]. However, the constraints are
placed on each independent sample rather than on parties
observing multiple correlated samples. In particular, none of
the prior works consider our specific composite hypothesis
testing problem.

Our main result is the characterization of the minimum
communication needed for distributed correlation testing. Our
proposed distributed test uses one-way communication, with
shared randomness, and solves the d-dimensional problem by
reducing it to the one-dimensional problem. This is done by
multiplying the observation vectors Xts of P1 with a scaled
random sign vector. Specifically, for d = 1, our test entails the
use of shared randomness to sample a vector that is close to
P1’s overall observation (X1, ..., Xn), sending the identity of
this vector to P2, and then P2 checking if its observation vec-
tor (Y1, ..., Yn) is close to this vector as well. We show that this
test requires roughly max{(1/τ2) log 1/ε, (1/τ2−1) log 1/δ}
bits of communication to get probabilities of false alarm and
missed detection to be less than δ and ε, respectively, when n
is sufficiently large. For a general d, noting that multiplying
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the observations with a random sign vector will yield a
one-dimensional correlation testing problem with correlation
roughly ‖ρ‖2/

√
d, we show that the d-dimensional problem

can be resolved using roughly (d/τ2) max{log 1/ε, log 1/δ}
bits of communication.

Interestingly, we establish a lower bound that shows that the
amount of one-way communication used by our protocol for
d = 1 is optimal among all one-way communication protocols.
We show this bound by using the notions of hypercontractivity
and reverse hypercontractivity (cf. [12], [17], [10], [13], [8],
[25]). We note that in [18] and [11], the notion of hypercon-
tractivity has been used to show lower bounds in the context
of agreement distillation, with and without communication
respectively. We apply the hypercontractivity inequalities for
obtaining a measure change between joint and product distri-
butions in the context of hypothesis testing, a slightly different
application in comparison to the contractivity properties of the
Markov operator used in [18], [11]. Also, by using the ten-
sorization property of the hypercontractivity ribbon, we extend
the bound to a general d to obtain a lower bound on one-way
communication of roughly (d/τ2) max{log 1/ε, log 1/δ} bits.

Recently, a strong data processing inequality for interactive
correlation estimation was derived in [19]. We invoke this
result to show that roughly d/τ2 bits of communication are
needed even when interactive communication is allowed, ren-
dering our proposed one-way communication protocol optimal
among interactive protocols. We note that this bound is slightly
weaker for one-way communication than the one obtained
using hypercontractivity.

The related problem of correlation vector estimation was
studied in [21]. In that work, an estimation protocol was given
that uses roughly d2/τ2 bits of communication to estimate ρ
within a mean squared error of τ2. Clearly, directly using this
estimate to test will not be communication optimal. However,
a natural question arises: can we find a better distributed
estimation protocol that will remain communication-optimal
even for testing? We show that, in fact, d2/τ2 bits of com-
munication are necessary for estimation, whereby estimate-
and-test strategy is strictly suboptimal for testing. Of course,
this does not rule out estimating a function of ρ and using
it as a statistic for the test. Indeed, our reduction to the one-
dimensional case implies that estimating ‖ρ‖2 and comparing
it with a threshold is communication optimal (up to constants).

Our proposed test is practical. In fact, we have simulated a
version with slightly different parameters than those presented
in our theoretical analysis below; the empirical performance
is depicted in Figure 1. A phase transition in probability of
error can be seen clearly when we communicate a number of
bits proportional1 to d/τ2.

The remainder of the paper is organized as follows. We
present our problem formulation in the next section, followed
by the main results in Section III. Our distributed correlation
test as well as its analysis are presented in Section IV. The
proof of our lower bounds for one-way communication is in

1As will be seen below, our proposed test uses a “median trick” to convert
the one-dimensional test to a d-dimensional test. In our simulation, even the
probabilities of correctness for the one-dimensional test are boosted to the
desired levels by repeating the tests and using a similar “median trick”.
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Fig. 1. Performance of the d-dimensional test for different values of d and
τ2 with d/τ2 ≈ 4.93. The probability of error (in y-axis) is the average of
probability of false alarm and probability of missed detection, evaluated by
averaging over 100 iterations.

Section V and for interactive communication is in Section VI.
We conclude with a discussion and some extensions of our
results in the final section.

Notation. Random variables are denoted by capital letters
such as X , Y , etc.; their specific realizations by the corre-
sponding small letters such as x, y, etc.; and their ranges by
the corresponding calligraphic forms such as X , Y , etc.. [N ]
denotes the set of integers {1, 2, . . . , N}. For a distribution Pρ
parametrized by ρ, we use Eρ[X] to denote the expectation
of the random variable X with respect to Pρ. Also, EU
denotes expectation with respect to U . PHi(A) denotes the
probability of event A under hypothesis Hi. All the logarithms
denoted by log are to the base 2; when needed, we use
ln a to denote the natural logarithm of a. For a vector a,
a(i) denotes its i-th coordinate, aT denotes its transpose, and

‖a‖p :=
(∑d

i=1 |a(i)|p
) 1
p

denotes its `p-norm.

II. PROBLEM SETUP

We consider jointly Gaussian random variables X ∈ Rd
and Y ∈ R with joint distribution as follows: for ρ(i) ∈
[−1, 1], 1 ≤ i ≤ d, we assume that

E[X(i)] = 0, E[X(i)X(j)] = 1 {i = j} , 1 ≤ i ≤ j ≤ d,

E[Y |X] =

d∑
i=1

ρ(i)X(i), E[Y 2] = 1. (1)

Note that the assumptions above imply E[Y ] = 0. Since we
assume E

[
Y 2
]

= 1, Jensen’s inequality gives

‖ρ‖22 = E
[
E[Y |X]2

]
≤ E

[
Y 2
]

= 1.

Alternatively, we can describe the joint distribution of X and
Y as follows:

Y = ρTX +
√

1− ‖ρ‖22Z,
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where Z is a standard normal random variable, and X and Z
are independent.

Let (Xt, Yt)
n
t=1 denote n independent copies of (X,Y ).

We consider a distributed hypothesis testing problem where
parties P1 and P2 observe Xn = (X1, ..., Xn) and Y n =
(Y1, ..., Yn), respectively, and seek to resolve the following
composite hypothesis testing problem:

Hd0 : ‖ρ‖2 ≥ τ,
Hd1 : ρ = 0,

where τ takes values in (0, 1] and is known to both the parties.
To determine the true hypothesis, the parties communicate

with each other interactively in multiple rounds. Specifically,
the parties use an r-round interactive communication protocol
π that comprises mappings f1, ..., fr; P1 and P2 use mappings
fi, 1 ≤ i ≤ r, to communicate in odd and even rounds
i, respectively. Each mapping fi takes as input the local
observation of the party, the previously seen communication,
and a shared random variable V available to both the parties
and outputs a binary string. Formally, denoting by Cj the
random binary string sent in round j, we have

fi : (Xn, C1, ..., Ci−1, V ) 7→ Ci ∈ {0, 1}`i , 1 ≤ i ≤ r, i odd,

fi : (Y n, C1, ..., Ci−1, V ) 7→ Ci ∈ {0, 1}`i , 1 ≤ i ≤ r, i even,

where `i, 1 ≤ i ≤ r, denotes the length of communication
in round i. The overall random communication (C1, ..., Cr)
is called the transcript of the protocol and is denoted by Π.
Furthermore, we denote by |π| the length

∑r
i=1 `i of the

transcript of the protocol. For simplicity, we describe our
formulation below only for odd r; the case of even r can
be handled similarly.

For an odd r, an r-interactive distributed test T = (π, g)
consists of an r-round interactive communication protocol π
and a decision mapping g(Y n,Π, V ) ∈ {0, 1}. A distributed
test T = (π, g) constitutes an (`, δ, ε, τ)-test with observation
length n if |π| = ` and

PHd0
(
g
(
Y n,Π, V

)
= 1
)
≤ δ, and

PHd1
(
g
(
Y n,Π, V

)
= 0
)
≤ ε.

Note that hypothesis H0 is composite, and we have used
PHd0 (·) as a shorthand for maxρ:‖ρ‖2≥τ Pρ(·), and further,
PHd1 (·) denotes P0(·). Also, note that shared randomness V
can be used by both the interactive communication protocol π
as well as the decision mapping g.

Our goal is to design a distributed test that communicates
as few bits as possible, while possessing the desired proba-
bilities of error. Formally, we seek bounds for the minimum
communication for d-dimensional correlation testing, defined
next.

Definition 1. Given δ, ε ∈ [0, 1] and τ ∈ (0, 1], the minimum
r-round communication for d-dimensional correlation testing
Crd(δ, ε, τ) is the least ` such that there exists an (`, δ, ε, τ)-
test T = (π, g) with an r-round interactive communication
protocol π, for all observations of length n sufficiently large.

The minimum communication for d-dimensional correlation
testing Cd(δ, ε, τ) is the infimum over r ∈ N of Crd(δ, ε, τ).

While we have formulated the problem for general r, our
main focus in this work is the minimum communication
C1
d(δ, ε, τ) for one-way communication protocols. We char-

acterize the dependence of C1
d(δ, ε, τ) on ε (respectively δ),

up to absolute multiplicative constants and additive constants
that may depend on δ (respectively ε). Furthermore, we show
that the dependence on ε is optimal up to constant factors,
even when additional rounds of interaction are available.
We summarize our results formally in the next section. But
before that we formulate the related problem of correlation
estimation.

Consider the problem of estimating ρ for the joint distribu-
tion given in (1). The observation of the parties and the r-round
interactive communication protocol is defined as before; as
above, we define the problem only for odd r. An r-interactive
distributed estimate is a pair (π, ρ̂) where π is an r-round
interactive communication protocol and ρ̂ : (Y n,Π, V ) 7→
ρ̂(Y n,Π, V ) ∈ [−1, 1]d.

An r-interactive distributed estimate (π, ρ̂) constitutes an
(`, τ)-estimate if |π| ≤ ` and

Eρ
{
‖ρ̂(Y n,Π, V )− ρ‖22

}
≤ τ2, (2)

where Eρ denotes the expectation with respect to the distribu-
tion in (1).

Definition 2. Given τ ∈ (0, 1], the minimum r-round com-
munication for d-dimensional correlation estimation C̃rd(τ) is
the least ` such that there exists an (`, τ)-estimate T = (π, ρ̂)
with an r-round interactive communication protocol π, for all
observations of length n sufficiently large.

The minimum communication for d-dimensional correlation
estimation C̃d(τ) is the infimum over r ∈ N of C̃rd(τ).

In the next section, we will provide a lower bound for
C̃d(τ), which establishes roughly that correlation estimation
requires much more communication than correlation testing.

Remark 1 (Shared randomness). In this paper, all lower
bounds hold for protocols with shared randomness and all
upper bounds are achieved by one-way protocols with shared
randomness.

III. MAIN RESULTS

We have divided our results into three parts: upper bounds
for C1

d(δ, ε, τ) achieved by our proposed scheme, a lower
bound for C1

d(δ, ε, τ), and a lower bound for Cd(δ, ε, τ) with
r > 1. These parts are presented in separate sections below.
The upshot of our results is that our protocol with r = 1
uses almost minimum communication not only among one-
way communication protocols, but also among interactive
protocols. Furthermore, we establish a lower bound for the
correlation estimation protocol which shows that it requires
strictly more communication than correlation testing. We con-
clude this section with a few comments on our assumptions
and techniques.

A. Upper bounds for C1
d(δ, ε, τ)

Our goal in this work is to handle high dimensional cor-
relation testing. Interestingly, we establish a reduction which



4

relates the high dimensional case to the d = 1 case. To state
our general result, first we state the result for d = 1.

Theorem 1. For every δ, ε ∈ (0, 1),

C1
1 (δ, ε, τ) ≤ 1

τ2

(√
log

1

ε
+

√
(1− τ2) log

1

δ

)2

+ ln

 2

τ2

(√
ln

1

ε
+

√
(1− τ2) ln

1

δ

)2

+ 1


+O

(√
log

1

δ
log

1

ε

)
.

To extend this result to the case of general d, we convert
the d-dimensional problem to the one-dimensional problem
as follows: Party P1 applies a random rotation (using shared
randomness V ) to the observed vector X to obtain X̃ . We
show that the first coordinate X̃(1) of the resulting vector
X̃ and Y have correlation coefficient roughly (τ/

√
d) under

H1
0 (with high probability) and correlation coefficient 0 under
H1

1. Using this fact (and a reduction result provided in the next
section), we get the following upper bound for C1

d(δ, ε, τ).

Theorem 2. There exists a positive constant c > 0 such that
for every δ, ε ∈ (0, 1) we have

C1
d(δ, ε, τ) ≤ c · d

τ2
·max

{
log

1

δ
, log

1

ε

}
+O

(
ln

d

τ2

)
,

where the second term has no dependence on δ or ε.

B. Lower bounds for C1
d(δ, ε, τ)

Our lower bound for the case d = 1 matches the upper
bound of Theorem 1 up to additive terms of lower order to
yield the following characterization for C1

1 (δ, ε, τ).

Theorem 3. For a fixed δ ∈ (0, 1/2) and every ε such that
δ + ε

1−τ
1+τ ≤ 1, we have2

C1
1 (δ, ε, τ) =

1

τ2
log

1

ε
+Oδ

(√
log

1

ε

)
,

and for a fixed ε ∈ (0, 1/2) and every δ ∈ (0, 1/2), we have

C1
1 (δ, ε, τ) =

1− τ2

τ2
log

1

δ
+Oε

(√
log

1

δ

)
,

where the notation Ox denotes that the constant implied by O
depends on x.

The proof of this result uses the notions of hypercontractiv-
ity and reverse hypercontractivity and is given in Section V.

In fact, we can relate the d-dimensional problem to the one-
dimensional problem by revealing extra information to P2 to
obtain a matching lower bound for Theorem 2, from which
the next result follows.

2With an abuse of notation, the O(x) notation for the additive error
denotes that the upper and lower bounds differ by at most an O(x) term.

Theorem 4. For 0 < τ ≤ 1, δ ∈ (0, 1/2), and ε such that
δ + ε

1−τ
1+τ ≤ 1, we have

C1
d(δ, ε, τ) = Θ

(
d

τ2
·max

{
log

1

ε
, log

1

δ

})
.

We remark that the reduction of the general d ≥ 1 case to
the one-dimensional case used in the proof of lower bound
differs from the reduction in the upper bound; we provide
the proof in Section V. Nevertheless, it is interesting that we
obtain tight results by relating the high dimensional setting to
the one-dimensional setting.

C. Lower bounds for r ≥ 1

Our final set of results provide lower bounds for interactive
communication with shared randomness, establishing the opti-
mality of our proposed distributed test even among interactive
tests. To derive this lower bound, we use a data processing
inequality from [24], which was used in a similar context
in [19]. In fact, using this technique we can even derive a
lower bound for the high dimensional correlation estimation
problem, showing that this problem requires orderwise higher
communication in comparison to correlation testing.

We begin with the result for the correlation testing problem.
Note that we only prove optimality in the dependence on ε,
and not on δ.

Theorem 5. For δ, ε, τ ∈ (0, 1), we have

Cd(δ, ε, τ) ≥ d

τ2

(
(1− δ) log

1

ε
− 1

)
.

The proof is provided in Section VI-A.
We note that while the lower bound above extends the

bounds from the previous section to the interactive setting,
it does not yield optimal constants for d = 1 and r = 1
unlike Theorem 3. In fact, we believe that even the lower
bound in Theorem 15 yields a tight constant; the slackness in
characterization of C1

d(δ, ε, τ) arises from our upper bound.
Thus, the lower bound in Theorem 5 is weaker than those
given in the previous section for r = 1.

Recall that the lower bounds of the previous section are
derived using the concepts of hypercontractivity and reverse
hypercontractivity (which appeared in the preliminary version
of this paper [29]). As mentioned above, the lower bound in
Theorem 5 uses a related but different idea of strong data
processing inequalities derived in [19]. Using the same bound
and Fano’s inequality, we also obtain the following lower
bound for C̃d(τ).

Theorem 6. There exists a constant c > 0, such that for every
τ ∈ (0, 1),

C̃d(τ) ≥ c d2

τ2
.

The proof is provided in Section VI-B.
In fact, the lower bound above is tight too, and matches

the upper bound attained by the distributed estimate proposed
in [21]. The lower bound above establishes that a simple
estimate-and-test approach using the estimate in [21] or other



5

estimates will not be able to attain the optimal O(d/τ2)
communication needed for correlation testing.

D. Comments on assumptions and techniques

Our proposed one-way communication scheme is related
to the scheme in [18] where communication for common
randomness generation (cf. [7]) was considered. We draw
on the heuristic connection between independence testing and
common randomness generation highlighted in [35], [34] to
adapt the scheme of [18] to devise a distributed correlation test.
In particular, the scheme in [18] uses a correlated sampling
idea to find a common vector U that is close to both Xn

and Y n. The index of this common vector constitutes the
generated common randomness; the communication used is
of lower length than the common randomness since Xt and
Yt, 1 ≤ t ≤ n, are correlated. In contrast, for our problem,
it is not a priori known whether Xt and Yt are correlated or
not. Nonetheless, we use a similar correlated sampling scheme
as in [18], with an important difference – we may not find a
common vector any more. In fact, we declare independence
(H1) if no common vector is found, and “correlatedness” (H0)
otherwise. Note that since the random variables need not be
correlated, the worst-case communication length is that for the
independence case.

We remark that for d = 1, the problem is, in effect, to
decide whether the given vectors Xn and Y n are orthogonal
or have an inner product greater than a known quantity. For
this case, it is possible to use a simple scheme that quantizes
each value Xt to its sign 1{Xt ≥ 0} and uses the known
sample complexity results for independence testing for the
collocated case (cf. [5]). This, too, will result in a scheme
that requires O(1/τ2) bits of communication. However, we
noted in [29], where we study the communication complexity
of one-dimensional independence testing, that our proposed
scheme uses communication that is a constant factor lower
than this baseline scheme. In particular, for Xt and Yt with
correlation ρ > 0, the correlation between the bits 1{Xt ≥ 0}
and 1{Yt ≥ 0} is 2

π arcsin(ρ) ≤ ρ. On the other hand, our
scheme requires a much larger n than this baseline scheme for
d = 1.

Finally, note that we have chosen the distribution to be
Gaussian just for convenience. Since we allow the number
of samples to be arbitrarily large, even when Xt and Yt are
not Gaussian, we can replace subset of samples with their
sample means and use the central limit theorem (Berry-Esseen
approximation) to do similar calculations as those presented
in this paper. Now we present our scheme and its analysis.

IV. OUR SCHEME AND ITS ANALYSIS

Our general scheme is obtained by first relating the
d-dimensional correlation testing problem to the one-
dimensional correlation testing problem, and then relating the
one-dimensional problem to its one-sided version. We develop
a test for this one-sided problem first and then, in steps,
convert it to a test for the d-dimensional problem in separate
subsections below.

A. One-sided correlation test

Consider the following one-sided variant of the correlation
testing problem with d = 1:

H+
0 : ρ ≥ τ,
H1

1 : ρ = 0,

where τ ∈ (0, 1] is known to both parties. We present a 1-
interactive distributed test for this problem; namely, we present
a test using one-way communication from P1 to P2.

Specifically, fix parameters r > 0, θ ≤ τ , and k ∈ N.
Throughout this section, for brevity, with a slight abuse of
notation we denote by X = (X1, ..., Xn) ∈ Rn and Y =
(Y1, ..., Yn) ∈ Rn, respectively, the observation of P1 and P2,
where (Xt, Yt)

n
t=1 are generated i.i.d. from the distribution

in (1). Furthermore, for two vectors u and v in Rn, we denote
u · v := uT v.

1) Using the shared randomness, parties generate an n×2k

matrix U consisting of i.i.d. uniform {−1,+1}-valued
entries Uij , 1 ≤ i ≤ n, 1 ≤ j ≤ 2k.

2) Let Uj denote the j-th column of U . P1 finds the least
index j ∈ [2k] such that

Uj ·X ≥ r
√
n,

and sends the k-bit representation of j to P2. If no such
j is found, declare H1

1.
3) P2, upon receiving j, declares H+

0 if

Uj · Y ≥ θ · r
√
n.

The next result captures the performance of our proposed
distributed test for an optimized choice of parameters r, θ,
and k.

Theorem 7. For δ, ε ∈ (0, 1), τ ∈ (0, 1), an appropriate
choice of θ ≤ τ , and for all n sufficiently large, the 1-
interactive test proposed above satisfies

PH+
0

[
Declare H1

1

]
≤ δ and PH1

1

[
Declare H+

0

]
≤ ε, (3)

when r is set as follows:

r2 =
2 ln 2

τ2

(√
log

1

ε
+ log ln

3

δ
+ 1 +

√
(1− τ2) log

3

δ

)2

,

and the communication length k satisfies

k =

⌈
log

1

Q(r)
+ log ln

3

δ

⌉
,

where Q(·) denotes the complementary cumulative distribution
function of a standard Gaussian random variable.

Remark 2 (Proof outline). At a high-level, the distributed
test proposed above first generates a “random codebook” by
generating independent copies of U and then uses a correlated
sampling scheme to find a codeword that is “close” to both X
and Y (in Euclidean distance). If no such vector is found in
the codebook, our scheme declares independence. An error of
type-I may occur if no such vector is found in spite of X and
Y being correlated. In the first part of our proof, we derive
a lower bound for the probability of finding such a common
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vector when X and Y are correlated, which is the same as an
upper bound for the error of type-I. In the other direction, an
error of type-II may occur if we find such a common vector
for independent X and Y ; our second step is to derive an
upper bound for the probability of this event.

In both these derivations, we define “closeness” in terms
of appropriately chosen thresholds for distance, which are
different for X and Y . Specifically, in our scheme, P1 finds the
index of a codeword that is within a fixed Euclidean distance
of X , shares this index with P2, which then tests if the same
codeword is within (another) fixed Euclidean distance of Y .
Thus, our analysis outlined above, in effect, evaluates the
probabilities of random high-dimensional vectors being close
in Euclidean distance, a well-studied calculation. Our final step
is to carefully choose values for these thresholds that give our
stated performance bound.

Proof. We present the proof in steps.
1) Lower bound for the probability of correctness under
H+

0 : We have

PH+
0

[
Declare H+

0

]
=

2k∑
j=1

PH+
0

(
Ul ·X < r

√
n for all l ≤ j − 1,

Uj ·X ≥ r
√
n,Uj · Y ≥ θ · r

√
n
)
,

where U0 is set to be 0. We approximate the right-side
using the Berry-Esseen theorem (cf. [16]) for a fixed
realization X = x. The event in the summands above,
conditioned on X = x, is an intersection of two events,
whose probabilities we analyze below:

(i) (The rejection sampling event {Ul · X <
r
√
n for all l ≤ j − 1, Uj · X ≥ r

√
n}) Noting

that Uj · x =
∑n
i=1 Uijxi is a sum of independent

random variables, the Berry-Esseen theorem yields

PH+
0

(
Ul ·X < r

√
n for all l ≤ j − 1,

Uj ·X ≥ r
√
n
∣∣∣X = x

)
=

[
PH+

0

(
n∑
i=1

Ui1xi < r
√
n
∣∣∣X = x

)]j−1

PH+
0

(
n∑
i=1

Uijxi ≥ r
√
n
∣∣∣X = x

)

≥

(
1−Q

(
r
√
n√∑n

i=1 x
2
i

)
− c0

∑n
i=1 |xi|3

(
∑n
i=1 x

2
i )

3
2

)j−1

(
Q

(
r
√
n√∑n

i=1 x
2
i

)
− c0

∑n
i=1 |xi|3

(
∑n
i=1 x

2
i )

3
2

)
,

where c0 is a constant.
(ii) (The correlated sampling event {Uj ·Y ≥ θ ·r

√
n})

We analyze the probability of this second event
conditioned on the first. Specifically, note that un-
der H+

0 , for each i ∈ [n] we have E[Yi|Xi] = ρXi

with ρ ≥ τ . It follows that for a fixed realization
X = x and U = u, the random variables UijYi,

1 ≤ i ≤ n, are independent with distribution
N (ρxi, 1 − ρ2) for every j ∈ [2k]. Note that for
uj · x ≥ r

√
n, we have

E [Uj · Y | U = u,X = x] = ρ(uj · x) ≥ ρr
√
n.

Therefore, for every u and x such that uj ·x ≥ r
√
n

and ul · x < r
√
n for all l ≤ j − 1, we have

PH+
0

(
Uj · Y ≥ θr

√
n
∣∣∣U = u,X = x

)
≥ Q

(
r (θ − ρ)√

1− ρ2

)
≥ Q

(
r (θ − τ)√

1− τ2

)
,

where the final bound holds since Q(a) is decreas-
ing in a and the function f(a) = (θ−a)/

√
1− a2

is non increasing in a for a ≥ θ; specifically, this
bound uses our assumption that θ ≤ τ .

Upon combining the bounds above, denoting σn(X) =√∑n
i=1X

2
i and βn(X) = c0

∑n
i=1 |Xi|3/σ3

n(X), we
obtain

PH+
0

[
Declare H+

0

]
≥ Q

(
r (θ − τ)√

1− τ2

)
E

[
Q
(

r
√
n

σn(X)

)
− βn(X)

Q
(

r
√
n

σn(X)

)
+ βn(X)

×

(
1−

(
1−Q

(
r
√
n

σn(X)

)
− βn(X)

)2k
)]

.

Using the law of large numbers and the inequality 1 −
a ≤ e−a, for every η > 0 and all n sufficiently large,
we get

PH+
0

[
Declare H+

0

]
≥ (1− η)

(
1− e−2kQ(r)

)
Q

(
r(θ − τ)√

1− τ2

)
≥ 1− e−2kQ(r) −Q

(
r(τ − θ)√

1− τ2

)
− η, (4)

where we used the bound (1 − x)(1 − y)(1 − z) ≥
1− (x+ y + z) for x, y, z ∈ (0, 1).

2) Upper bound for the probability of error under H1
1: We

derive a bound for the probability of declaring H+
0 when

H1
1 is true, which holds for every fixed realization u of

the random codebook U . Since
∑n
i=1 uijXi is a sum of

n independent standard Gaussian random variables, we
have

PH1
1

(
n∑
i=1

uijXi ≥ r
√
n
∣∣∣U = u

)
= Q(r),

and similarly,

PH1
1

(
n∑
i=1

uijYi ≥ θr
√
n
∣∣∣U = u

)
= Q(θr).

Therefore,

PH1
1

(
Declare H+

0

)
≤ EU

[
2k∑
j=1

PH1
1

(
n∑
i=1

UijXi ≥ r
√
n

)
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PH1
1

(
n∑
i=1

UijYi ≥ θr
√
n

)]
≤ 2kQ(r)Q(θr). (5)

3) Choice of the optimal parameters satisfying the error
requirements: To satisfy the error condition (3), by (4)
and (5) it suffices to set η = δ/3 and choose r, θ, and k
to satisfy the following:

ln
3

δ
≤ 2kQ(r) ≤ 2 ln

3

δ
, (6)

Q

(
r(τ − θ)√

1− τ2

)
≤ δ

3
, (7)

Q(θr) ≤ ε

2 ln 3
δ

. (8)

Using Chernoff bound Q(x) ≤ e−x
2/2, for condi-

tions (7) and (8) it suffices to have

1− τ2

(τ − θ)2
· log

3

δ
≤ r2

2 ln 2
,

1

θ2

(
log

1

ε
+ log ln

3

δ
+ 1

)
≤ r2

2 ln 2
.

Therefore, the least value of k is given by an r that
satisfies

r2

2 ln 2
= min

θ≤τ
max

{
a

θ2
,

b

(τ − θ)2

}
,

where a =
(
log 1

ε + log ln 3
δ + 1

)
and b = (1 −

τ2) log 3
δ . The optimal θ∗ for the problem on the right-

side is given by

θ∗ =
τ
√
a√

b+
√
a
,

whereby our optimal choice of r2 is

r2

2 ln 2
=

1

τ2

(√
a+
√
b
)2

=
1

τ2

(√
log

1

ε
+ log ln

3

δ
+ 1 +

√
(1− τ2) log

3

δ

)2

.

Thus, by (6), we can satisfy (3) if we set2 k =⌈
log 1

Q(r) + log ln 3
δ

⌉
for r given above.

B. Distributed correlation test for d = 1

We now extend the one-sided test above to a test for d = 1.
We present a general reduction which will allow us to use any
1-interactive distributed test for the one-sided problem (not just
the one above) for the (two-sided) correlation testing problem
with d = 1.

Lemma 8 (Two-sided to one-sided). For δ ∈ (0, 1), ε ∈
(0, 1/2), τ ∈ (0, 1), and ` ∈ N, suppose that T+ =
T+(Xn, Y n) is an 1-interactive (`, δ, ε, τ)-test for the one-
sided correlation testing problem. Then, we can find a 1-

2In our analysis, we cannot set k higher than this either.

interactive (`, δ, 2ε, τ)-test for the correlation testing problem
with d = 1.

Proof. We begin by noting that T−(Xn, Y n) =
T+(Xn,−Y n) is an (`, δ, ε, τ)-test for the following
alternative one-sided problem:

H−0 : ρ ≤ −τ,
H1

1 : ρ = 0.

Note that the communication protocol for T+ and T− is
the same; the corresponding decision mappings g+ and g−

differ. In particular, g−(Y n,Π, V ) = g+(−Y n,Π, V ), and let
π be the common communication protocol for T+ and T−.
Consider the following 1-interactive distributed test T = (π, g)
for the correlation testing problem.

1) Parties execute the communication protocol π.
2) Use decision mapping

g(Y n,Π, V ) = min{g+(Y n,Π, V ), g−(Y n,Π, V )}.

For this test, we can verify that

PH1
1

[g(Y n,Π, V ) = 0]

= PH1
1

[
g+(Y n,Π, V ) = 0 or g−(Y n,Π, V ) = 0

]
≤ PH1

1

[
g+(Y n,Π, V ) = 0

]
+ PH1

1

[
g−(Y n,Π, V ) = 0

]
≤ 2ε.

Furthermore, under H1
0,

PH1
0

[g(Y n,Π, V ) = 1]

= PH1
0

[
g+(Y n,Π, V ) = g−(Y n,Π, V ) = 1

]
≤ max

{
PH+

0

[
g+(Y n,Π, V ) = g−(Y n,Π, V ) = 1

]
,

PH−0
[
g+(Y n,Π, V ) = g−(Y n,Π, V ) = 1

]}
≤ δ,

which shows that T constitutes an (`, δ, 2ε, τ)-test.

Lemma 8, Theorem 7, and the well-known bound Q(x) ≥
x√

2π(x2+1)
e−x

2/2 yield Theorem 1.

C. Proof of Theorem 2
Finally, now that we have a correlation test for d = 1, we

complete the proof of Theorem 2 to obtain a test for general d.
We begin by making a simple observation akin to the “median
trick” in randomized algorithms.

Lemma 9. For α, β, τ ∈ (0, 1) with α+ β < 1, suppose that
we have an r-interactive (`, α, β, τ)-test for the d-dimensional
correlation testing problem. Then, for every δ, ε ∈ (0, 1),
we can obtain an r-interactive (m`, δ, ε, τ)-test for the d-
dimensional correlation testing problem whenever

m ≥ 2

(1− β − α)2
max

{
ln

1

δ
, ln

1

ε

}
.

Proof. We provide proof only for odd r; even r can be handled
similarly. Consider an r-interactive distributed test T = (π, g)
that satisfies

PHd0 (g(Y n,Π, V ) = 1) ≤ α,
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PHd1 (g(Y n,Π, V ) = 0) ≤ β,

where π is a communication protocol of length `. To con-
struct the desired test, we repeat the test above m times
independently. Specifically, we first apply the test above to
m independent copies of (Xn, Y n, V ) to obtain transcripts
Π1, ...,Πm. Note that the resulting communication protocol
is still an r-round protocol, with length m`. Denote by
V1, ..., Vm the independent copies of the shared randomness
used for the protocol. Further, denote by Di the output
g(Y nin(i−1)+1,Πi, Vi), 1 ≤ i ≤ m, for the i-th copy of the
test. Consider the new decision mapping gm given by

gm(Y nm,Πm, V m) = 1

{
m∑
i=1

Di > mt

}
,

for a fixed α < t < 1 − β. Note that D1, ..., Dm are
independent bits and by our assumption about T , satisfy

PHd0 (Di = 1) ≤ α,
PHd1 (Di = 1) ≥ 1− β,

for every 1 ≤ i ≤ m. Therefore, by Hoeffding’s inequality,

PHd0 (gm(Y nm,Πm, V m) = 1) = PHd0

(
m∑
i=1

Di > mt

)
≤ e−2m(t−α)2 ,

and similarly,

PHd1 (gm(Y nm,Πm, V m) = 0) = PHd1

(
m∑
i=1

Di ≤ mt

)
≤ e−2m(1−β−t)2 .

In particular, by setting m ≥ 2
(1−β−α)2 max

{
ln 1

δ , ln
1
ε

}
and

t = (1− β + α)/2, we obtain the desired test.

Thus, it suffices to construct a distributed test with constant
probability of error. We do that in the result below by using
a 1-interactive distributed test for d = 1. Our test uses a
randomized construction; to facilitate its analysis, we note the
following fact.

Lemma 10. For R = 1√
d
W with W a random vector con-

sisting of i.i.d. Rademacher entries, for every vector x ∈ Rd
we have,

P
((
RTx

)2 ≥ ‖x‖22
2d

)
≥ 1

28
.

Proof. The proof uses the Paley-Zygmund inequality. Specif-
ically, denote by Z the random variable RTx. Then,

E
[
Z2
]

= E


 d∑
j=1

Rjxj

2


= E

1

d
‖x‖22 +

d∑
i=1

d∑
j=1

RiRjxixj1{j 6= i}


=

1

d
‖x‖22,

where the last step follows from the fact that entries of R are
independent with zero-mean. Next, we consider E

[
Z4
]
. Note

that the only terms in the expansion of
(∑d

i=1Rixi

)4

that
have nonzero mean are those which have only even powers of
entries of R. In particular, these are terms of the form R4

i x
4
i

and R2
iR

2
jX

2
iX

2
j with distinct i, j. Therefore, we have

E
[
Z4
]

=
1

d2

d∑
i=1

x4
i +

(
4

2

)
1

d2

d∑
i=1

d∑
j=1

x2
ix

2
j1{i 6= j}

≤ 1

d2
(‖x‖44 + 6‖x‖42)

≤ 7‖x‖42
d2

,

where the final inequality uses ‖x‖4 ≤ ‖x‖2. Therefore, by
the Paley-Zygmund inequality, for ν ∈ (0, 1),

P
(
Z2 > νE

[
Z2
])
≥ (1− ν)2E

[
Z2
]2

E [Z4]
≥ (1− ν)2

7
.

The claim follows by setting ν = 1/2.

We are now in a position to complete the proof of Theo-
rem 2. We use the distributed test for d = 1 from Theorem 1
to build a test for a general d. Specifically, we replace
the d-dimensional observations X1, ..., Xn of P1 with one-
dimensional X̃1, ..., X̃n given by X̃t = RTXt, 1 ≤ t ≤ n,
where R is a random vector generated as in Lemma 10. Note
that (X̃t, Yt)

n
t=1 are i.i.d. with

E
[
Y1X̃1 | R

]
= E

[(
ρTX1 +

√
1− ‖ρ‖22Z1

)(
RTX1

)
| R
]

= ρTE
[
X1X

T
1

]
R

= ρTR.

Thus, by Lemma 10,

PR

({
r :
∣∣∣E [Y1X̃1|R = r

]∣∣∣ ≥ ‖ρ‖2√
2d

})
≥ 1

28
.

Denoting G :=
{
r :
∣∣∣E [Y1X̃1|R = r

]∣∣∣ ≥ ‖ρ‖2√
2d

}
and ρ̃(r) :=∣∣∣E [Y1X̃1 | R = r

]∣∣∣, for every r ∈ G we have

ρ̃(r) ≥ τ/
√

2d under Hd0,
ρ̃(r) = 0 under Hd1.

Also, in the test we construct for the d-dimensional case, we
invoke a 1-interactive (`, 1/56, 1/112, τ/

√
2d)-test T1 for the

one-dimensional correlation testing problem ρ̃(r) ≥ τ/
√

2d
versus ρ̃(r) = 0 with

` ≤ cd

τ2
,

for an appropriate constant c, as guaranteed by Theorem 1.
Next, consider the test for Hd0 versus Hd1 that samples

R from shared randomness executes the aforementioned test
T1 for Hd0 versus Hd1 the one-dimensional problem ρ̃(R) ≥
τ/
√

2d versus ρ̃(R) = 0. We make the observation that
ρ̃(R) = 0 almost surely for R, when ρ = 0. Thus, the missed
detection probability for the one-dimensional test remains
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unchanged. However, a false alarm may be raised when R /∈ G
or when the one-dimensional test raises a false alarm. It
follows that for this test

PHd0
(
Declare Hd1

)
≤ 1

56
+ P (R /∈ G) ≤ 55

56
,

and
PHd1

(
Declare Hd0

)
≤ 1

112
,

whereby it constitutes a (cd/τ2, 55/56, 1/112, τ)-test for the
d-dimensional correlation testing problem.

Thus, we have obtained our desired test with constant
probability of error guarantees. Theorem 2 follows by using
this test along with Lemma 9.

V. PROOF OF LOWER BOUNDS FOR r = 1

We begin by deriving lower bounds for the one-dimensional
problem. Our lower bounds involve the notions of hypercon-
tractivity and reverse hypercontractivity (cf. [8], [26], [13],
[25]), which we define first.

For 1 ≤ q ≤ p < ∞, a pair of random variables (X,Y )
is (p, q)-hypercontractive if for all R-valued functions f of X
and g of Y ,

E [|f(X)g(Y )|] ≤ ‖f(X)‖p′‖g(Y )‖q,

where p′ = p/(p− 1) is the Hölder conjugate of p. Similarly,
for 1 ≥ q > p, a pair of random variables (X,Y ) is (p, q)-
reverse hypercontractive if for all R-valued functions f of X
and g of Y ,

E [|f(X)g(Y )|] ≥ ‖f(X)‖p′‖g(Y )‖q.

The set of all (p, q) for which (X,Y ) is (p, q)-hypercontractive
and (p, q)-reverse hypercontractive, respectively, are called
the hypercontractivity ribbon and the reverse hypercontrac-
tivity ribbon of (X,Y ). In particular, we use the following
characterization obtained by setting f and g to be indicator
functions. For A × B, a measurable subset of Rn × Rn, for
1 ≤ q ≤ p <∞,

P[A× B] ≤ P[A]1/p
′
P[B]1/q,

and for 1 ≥ q > p,

P[A× B] ≥ P[A]1/p
′
P[B]1/q.

The following tensorization property of hypercontractivity
and reverse hypercontractivity ribbons are well known.

Lemma 11 (Tensorization [26] [25]). For p ≥ 1, define

qp(X,Y ) = inf{q : (X,Y ) is (p, q)-hypercontractive},

and rp(X,Y ) = qp(X,Y )/p. If (Xi, Yi)
n
i=1 are independent,

then

rp(X
n, Y n) = max

1≤i≤n
rp(Xi, Yi).

Furthermore, for p ≤ 1, define

qp(X,Y ) = sup{q : (X,Y ) is (p, q)-reverse hypercontractive},

and sp(X,Y ) = qp(X,Y )/p. If (Xi, Yi)
n
i=1 are independent,

then

sp(X
n, Y n) = max

1≤i≤n
sp(Xi, Yi).

We use the notions of hypercontractivity and reverse hyper-
contractivity to obtain the change of measure bounds between
the joint distribution and the independent distribution, which
in turn lead to the following two lower bounds for C1

1 (δ, ε, τ).
Specifically, we note that the acceptance region corresponding
to one-way communication corresponds to a union of disjoint
rectangle sets. We use hypercontractivity to relate the measures
of rectangle sets under the joint distribution corresponding to
|ρ| > τ and the product distribution corresponding to ρ = 0,
which in turn leads to the required lower bound.

Theorem 12 (Lower bound 1). Given δ, ε ∈ (0, 1) and
(p, q) such that 1 ≤ p′ ≤ q ≤ p and (X,Y ) is (p, q)-
hypercontractive, the minimum one-way communication for
one-dimensional correlation testing C1

1 (δ, ε, τ) is bounded
below as

C1
1 (δ, ε, τ) ≥ p

q
log

1

ε
− p log

1

1− δ
. (9)

Proof. For 1 ≤ q ≤ p, suppose that (X,Y ) is (p, q)-
hypercontractive, which by Lemma 11 implies that (Xn, Y n)
is (p, q)-hypercontractive. Furthermore, assume that p′ ≤ q
which is the same as q′ ≤ p. Then, for any subset A ⊂ Xn
and B ⊂ Yn, we have

PXnY n (A× B) ≤ PXn (A)
1
p′ PY n (B)

1
q . (10)

We begin by considering a deterministic test where the shared
randomness U is constant. Specifically, given a deterministic
(`, δ, ε, τ)-test T = (f, g), denoting3 L = 2`, let Ai = f−1(i)
for i = 1, ..., L. Then, {A1, ...,AL} constitutes a partition of
Xn. Further, let Bi denote the set {y ∈ Yn : g(y, i) = 0},
namely the set of y where P2 declares H1

0 upon receiving i
from P1. It follows that

1− δ ≤
L∑
i=1

PXnY n (Ai × Bi)

≤
L∑
i=1

PXn (Ai)
1
p′ PY n (Bi)

1
q ,

where the previous inequality uses (10). Upon bounding the
right-side using Hölder’s inequality, we get

1− δ ≤
L∑
i=1

(PXn (Ai) PY n (Bi))
1
q PXn (Ai)

1
p′−

1
q

≤

(
L∑
i=1

PXn (Ai) PY n (Bi)

) 1
q
(

L∑
i=1

PXn (Ai)
q′
(

1
p′−

1
q

)) 1
q′

≤ ε
1
q

(
L∑
i=1

PXn (Ai)
q′
(

1
p′−

1
q

)) 1
q′

,

3With a slight abuse of notation, we denote the one-way communication
protocol by a mapping f . Further, we assume that f and g are measurable.
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where the previous inequality uses the requirement
PH1

1

(
Declare H1

0

)
≤ ε. Noting that q′(1/p′−1/q) = 1−q′/p,

the assumption q′ ≤ p and Hölder’s inequality imply
L∑
i=1

PXn (Ai)
q′
(

1
p′−

1
q

)
≤ L

q′
p .

Combining the bounds above, we get

1− δ ≤ ε
1
qL

1
p ,

which completes the proof.

When shared randomness is available, we follow the proce-
dure above for the deterministic test obtained by conditioning
on the shared randomness V ; let (AVi ,BVi ), 1 ≤ i ≤ L, denote
the counterpart of (Ai,Bi) above for shared randomness V .
Proceeding as before, we have

1− δ ≤ EV

[(
L∑
i=1

PXn
(
AVi
)

PY n
(
BVi
)) 1

q

(
L∑
i=1

PXn
(
AVi
)q′( 1

p′−
1
q

)) 1
q′
]

≤ EV

( L∑
i=1

PXn
(
AVi
)

PY n
(
BVi
)) 1

q

L 1
p .

It follows from Jensen’s inequality that

1− δ ≤ EV

[
L∑
i=1

PXn
(
AVi
)

PY n
(
BVi
)] 1

q

L
1
p .

≤ ε
1
qL

1
p ,

which completes the proof of Theorem 12.

Theorem 13 (Lower bound 2). Let δ, ε ∈ (0, 1) and (p, q) be
such that 1 ≥ q ≥ 0 ≥ q′ ≥ p and (X,Y ) is (p, q)-reverse
hypercontractive. Then,

C1
1 (δ, ε, τ) ≥ p

q
log

1

1− ε
− p log

1

δ
. (11)

Proof. For 1 ≥ q > p, suppose that (X,Y ) is (p, q)-
reverse hypercontractive, which with Lemma 11 implies that
(Xn, Y n) is (p, q)-reverse hypercontractive. Furthermore, as-
sume that q′ ≥ p. Then, for any subset A ⊂ Xn and B ⊂ Yn,
for 0 ≤ θ ≤ 1 we have

PXnY n (A× B)
θ ≥ PXn (A)

θ( p−1
p ) PY n (B)

θ 1
q . (12)

We only provide a proof for deterministic tests; the extension
to the case when shared randomness is used can be com-
pleted as in the proof of Theorem 12. Given a deterministic
(`, δ, ε, τ)-test T = (f, g), let Ai = f−1(i) for i = 1, ..., L =
2`, and let Bi denote the set {y ∈ Yn : g(y, i) = 1}. It follows
that

1− ε ≤
L∑
i=1

PXn (Ai) PY n (Bi)

≤
L∑
i=1

PXn (Ai)1−θ( p−1
p ) PY n (Bi)1− θq PXnY n (Ai × Bi)θ ,

where the previous inequality uses (12). Upon bounding the
right-side using Hölder’s inequality, we get

1− ε ≤

(
L∑
i=1

(
PXn (Ai)1−θ( p−1

p ) PY n (Bi)1− θq
) 1

1−θ

)1−θ

(
L∑
i=1

PXnY n (Ai × Bi)

)θ

≤

(
L∑
i=1

PXn (Ai)1+( θ
p(1−θ) ) PY n (Bi)

q−θ
q(1−θ)

)1−θ

δθ,

where the previous inequality uses the requirement
PH1

0

(
Declare H1

1

)
≤ δ. Choosing θ = q, the assumption

q′ ≥ p together with Hölder’s inequality implies(
L∑
i=1

PXn (Ai)1+ q
p(1−q)

)1−q

≤ L
−q
p .

Combining the bounds above, we get

1− ε ≤ δqL
−q
p ,

which completes the proof.

To obtain tight lower bounds for one-dimensional X and Y
jointly Gaussian, we need to optimize our lower bounds over
the entire hypercontractivity and reverse hypercontractivity
ribbon. We rely on the following characterizations of the
hypercontractivity and the reverse hypercontractivity ribbons.

Lemma 14 (cf. [17],[27, Theorem 11.23]). Let X and Y
be one-dimensional with joint distribution given by (1). For
1 ≤ q ≤ p, (X,Y ) is (p, q)-hypercontractive if and only if

q − 1

p− 1
≥ ρ2. (13)

Furthermore, for 1 ≥ q ≥ p, (X,Y ) is (p, q)-reverse
hypercontractive if and only if

1− q
1− p

≥ ρ2. (14)

Theorem 3 is obtained by maximizing the right-sides of (9)
and (11), respectively, over the set of (p, q) satisfying (13) and
(14); the upper bound is from Theorem 1. It suffices to show
the lower bound for any fixed distribution in H0 and we pick
Pτ .

Proof of Theorem 3. Assume first that ε
1−τ
1+τ ≤ 1 − δ. Using

the characterization in Lemma 14, (X,Y ) with joint distribu-
tion Pτ is (p, q)-hypercontractive for any p and q satisfying

p = 1 + w,

q = 1 + τ2w,

for any w ≥ 0. Inserting this choice of (p, q) in the lower
bound of Theorem 12, we get for any (`, δ, ε, τ)-test that

` ≥ 1 + w

1 + τ2w
log

1

ε
− (1 + w) log

1

1− δ
.
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For brevity, we let ξ := log(1 − δ)/ log ε; our assumption
ε

1−τ
1+τ ≤ 1− δ is equivalent to ξ ≤ (1− τ)/(1 + τ). To obtain

the tightest lower bound, we maximize (1 +w)/(1 + τ2w)−
ξ(1 +w) over w ≥ 0. The maximum is obtained at w∗ given
by

w∗ =
1

τ2

(√
1− τ2

ξ
− 1

)
,

provided ξ ≤ 1−τ2, which holds since 1−τ2 ≥ (1−τ)/(1+
τ). Furthermore, the corresponding optimal p∗ and q∗ satisfy
p∗′ ≤ q∗ if and only if

τ2 ≤

(√
1− τ2

ξ
− 1

)2

,

which is satisfied when ξ ≤ (1− τ)/(1 + τ). Thus,

` ≥
(

log
1

ε

)(
1 + w∗

1 + τ2w∗
− ξ(1 + w∗)

)
=

1

τ2

(√
log

1

ε
−
√(

1− τ2
)

log
1

1− δ

)2

. (15)

The first part of Theorem 3 follows from (15) and Theorem 1.
To get the second part of Theorem 3, we obtain a re-

placement for (15) using the reverse hypercontractivity part
of Lemma 14. Specifically, (X,Y ) with joint distribution Pτ
is (p, q)-reverse hypercontractive for any p and q satisfying

p = 1− w,
q = 1− τ2w,

for any 1
τ2 ≥ w ≥ 0 since q must be greater than or equal

to 0. Inserting this choice of (p, q) in the lower bound of
Theorem 13, we get for any (`, δ, ε, τ)-test that

` ≥ 1− w
1− τ2w

log
1

1− ε
− (1− w) log

1

δ
.

We maximize the right-side of the above inequality subject to
w ≤ 1

τ2 . The maximum is obtained at w∗ given by

w∗ =
1

τ2

1−

√
(1− τ2) log 1

1−ε

log 1
δ

 .

Note that w∗ ≤ 1
τ2 is satisfied for every δ and ε, and the

additional assumption ε
1−τ
1+τ ≤ 1 − δ of the first part of

Theorem 3 is not required for the second part. Thus,

` ≥ 1− w∗

1− τ2w∗
log

1

1− ε
− (1− w∗) log

1

δ

=
1

τ2

(√
log

1

1− ε
−
√(

1− τ2
)

log
1

δ

)2

,

which together with Theorem 1 yields the second part of
Theorem 3.

Finally, we exploit tensorization property in Lemma 11 to
provide a matching lower bound for Theorem 2 in the result
below.

Theorem 15. For 0 < τ ≤ 1,

1) for δ ∈ (0, 1) with ε such that δ + ε
1−τ
1+τ ≤ 1, we have

C1
d(δ, ε, τ) ≥ d

τ2

(√
log

1

ε
−

√(
1− τ2

d

)
log

1

1− δ

)2

;

2) for δ, ε ∈ (0, 1),

C1
d(δ, ε, τ) ≥ d

τ2

(√
log

1

1− ε
−

√(
1− τ2

d

)
log

1

δ

)2

.

Proof. We consider a different problem where the obser-
vation of P1 remains the same but we provide more in-
formation to P2. Specifically, P1 observes i.i.d. copies of
X = (X(1), . . . , X(d)) and P2 observes i.i.d. copies of
Y = (Y (1), . . . , Y (d)) where for i = 1, . . . , d,

E[Y (i)|X] = ρ(i)X(i).

Note that in our original problem the observation of P2 are
i.i.d. copies of Y (1) + . . .+ Y (d). With this modified obser-
vation for P2, we consider the hypothesis testing problem of
Hd0 versus Hd1 as before. Denote by C̃1

d(δ, ε, τ) the minimum
` such that we can find a 1-interactive (`, δ, ε, τ)-test for
this modified problem. Since the observation for the former
problem can be obtained from the latter problem as well, we
have

C1
d(δ, ε, τ) ≥ C̃1

d(δ, ε, τ).

Furthermore, with X = Y = Rd, the proof of Theorem 12
applies to the modified problem as well, and we obtain the
following bound:

C̃1
d(δ, ε, τ) ≥ p

q
log

1

ε
− p log

1

1− δ
,

where (Xn, Y n) is (p, q)-hypercontractive. By Lemma 11 and
Lemma 14, we can parameterize p and q as

p = 1 + w,

q = 1 + ρ2
maxw,

with w ≥ 0 and ρ2
max := maxdi=1 ρ(i)2. Proceeding as in the

proof of Theorem 3, we get

C̃1
d(δ, ε, τ) ≥ 1

ρ2
max

(√
log

1

ε
−
√(

1− ρ2
max

)
log

1

1− δ

)2

.

Note that we can choose any ρ such that ‖ρ‖2 ≥ τ . Among
all such ρs, the minimum value of ρmax is attained by ρ with
ρ(i)2 = τ2/d. Using this value for ρ, we get

C̃1
d(δ, ε, τ) ≥ d

τ2

(√
log

1

ε
−

√(
1− τ2

d

)
log

1

1− δ

)2

,

which completes the proof of the first part of Theorem 15. The
proof of the second part is completed similarly by using the
tensorization property of the reverse hypercontractivity ribbon.
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VI. LOWER BOUNDS FOR TESTING AND ESTIMATION WITH
INTERACTIVE COMMUNICATION

The following bound was derived in [19] using a strong
data processing inequality; the statement follows from [19,
Theorem 7.1 and 7.2].4

Lemma 16. (see [19]) For ρ ∈ [−1, 1]d and any interactive
communication protocol π with inputs Xn and Y n for parties
P1 and P2, respectively, we have

D(Pρ‖P0) ≤ ρ2
max |π|,

where ρ2
max = maxi∈[d] ρ(i)2, Pρ denotes the distribution

in (1) and D(P ||Q) denotes the Kullback-Leibler (KL) di-
vergence between distributions P and Q.

We use this lemma to prove Theorems 5 and 6.

A. Proof of Theorem 5 - Lower Bound for Testing

Let T = (π, g) constitute an (`, δ, ε, τ)-test. Denote by
P the distribution of (Y n,Π, V ) under Hd0 and by Q the
distribution of (Y n,Π, V ) under Hd1 .

Then,

p0 , P (g(Y n,Π, V ) = 0) ≥ 1− δ,
q0 , Q (g(Y n,Π, V ) = 0) ≤ ε.

Then, by the data processing inequality applied using the
channel 1{g(Y n,Π, V ) = 0}, we have

D(P‖Q) ≥ D(p0||q0)

≥ p0 log
1

q0
− 1

≥ (1− δ) log
1

ε
− 1, (16)

where D(p0||q0) denotes the KL divergence between proba-
bility mass functions (p0, 1 − p0) and (q0, 1 − q0), and we
have used the bound h(p0) ≤ 1 where h(·) denotes the
binary entropy function. Furthermore, by Lemma 16 we have
D(P‖Q) ≤ ρ2

max`, which with the previous bound gives

` ≥ 1

ρ2
max

(
(1− δ) log

1

ε
− 1

)
.

To obtain the tightest possible bound, we choose ρ such that
ρ(i)2 = τ2/d for every 1 ≤ i ≤ d, which yields

` ≥ d

τ2

[
(1− δ) log

1

ε
− 1

]
.

B. Proof of Theorem 6 - Lower Bound for Estimation

We provide lower bounds for the estimation error using
Fano’s method. Using the Gilbert-Varshamov construction
(see, for instance, [14, Problem 5.5]) we can find m ≥
2d(1−h(1/4)) ≥ 2d/6 vectors u1, ..., um ∈ {−1,+1}d such that

4[19, Theorem 7.1 and 7.2] hold for interactive protocols with shared
randomness and are stated for one-dimensional X and Y . However, the result
“tensorizes” (see [19, Lemma 9.3]) and gives the general form in Lemma 16.

their Hamming distance dH(ui, uj) ≥ d/8 for every i 6= j.
For every ∆ > 0, the vectors ρi := ∆√

d
·ui, 1 ≤ i ≤ m satisfy

min
i,j∈[m]:i6=j

‖ρi − ρj‖22 =
4∆2dH(ui, uj)

d
≥ ∆2

2
,

max
i
ρj(i)

2 =
∆2

d
, ∀ 1 ≤ j ≤ m.

Consider an r-interactive (`, τ)-estimate (π, ρ̂). We use the
estimator ρ̂ to resolve between the hypotheses Hj , j ∈ [m]
where under Hj , X ∈ Rd and Y ∈ R are jointly Gaussian
and

Eρj [Y |X] =

d∑
i=1

ρj(i)X(i).

Consider the test that declares5 Hj if ‖ρ̂− ρj‖22 < ∆2/8; the
output is unique since ‖ρi − ρj‖22 ≥ ∆2/2 for every i 6= j.
By Markov’s inequality, the probability of error for this test
under Pρj is bounded above by

Pρj
(
‖ρ̂− ρj‖22 ≥ ∆2/8

)
≤ 8

∆2
Eρj

[
‖ρ̂− ρj‖22

]
.

Therefore, denoting by P ∗e the minimum average probability
of error for this hypothesis testing problem under uniform prior
on the hypotheses, we get from (2) that

τ2 ≥ max
j∈[m]

∆2

8
Pρj

(
‖ρ̂− ρj‖22 ≥ ∆2/8

)
≥ ∆2

8m

m∑
i=1

Pρj
(
‖ρ̂− ρj‖22 ≥ ∆2/8

)
≥ ∆2

8
P ∗e .

By Fano’s inequality, we have

P ∗e ≥ 1− C(W ) + 1

logm
, (17)

where W denotes the channel with input j ∈ {1, ...,m}
and output (Y n,Π, V ) with distribution corresponding to the
correlation ρj between Xn and Y n, and C(W ) denotes the
capacity of channel W . Recall the well-known bound

C(W ) ≤ min
Q

max
j
D(W (·|j)‖Q).

We use this bound with Q chosen to be the distribution of
(Y n,Π, V ) when the correlation between X and Y is ρ = 0.

Then, by Lemma 16 we have

D(W (·|j)‖Q) ≤ max
1≤i≤d

ρj(i)
2` =

∆2`

d
.

Combining the bounds above yields

τ2 ≥ ∆2

8

(
1− 6(∆2`/d+ 1)

d

)
.

In particular, for d ≥ 12, setting ∆2`/d2 = 1/24 gives ` ≥
d2

768τ2 . Note that for d < 12, for an appropriate constant c,
the lower bound ` ≥ cd2 /τ2 holds since we already have an

5In the remainder of this proof, with an abuse of notation, we denote the
random variable ρ̂(Y n,Π, V ) by ρ̂.
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Ω(d/τ2) lower bound for the testing problem. This completes
the proof.

VII. EXTENSIONS AND DISCUSSION

We conclude with a discussion on various extensions of our
result, and state some of these extensions without proof (the
proofs are very similar to the others in the paper).

First, we note that while the hypercontractivity based lower
bound yields a tight dependence on δ or ε separately in
Theorem 3, it does not characterize the joint dependence on δ
and ε simultaneously. Interestingly, when we allow δ > 1/2
and have ε small, such a joint characterization is possible.
Specifically, for d = 1, consider the simple binary hypothesis
problem of correlation ρ versus correlation 0. The test we
use in Theorem 7 for resolving between H+

0 and H1
1 with

a different choice for θ and r yields a joint characterization
of one-way minimum communication needed for this problem
(see [29]). Interestingly, the overall communication is below
(1/ρ2) max{log 1/ε, log 1/δ}.

Theorem 17. For d = 1, 0 < ρ ≤ 1, δ ∈ (1/2, 1), and ε

such that δ+ε
1−τ
1+τ ≤ 1, the minimum one-way communication

needed to test if correlation is ρ or 0 is given by

1

ρ2
·

(√
log

1

ε
−
√(

1− ρ2
)

log
1

1− δ

)2

+O

(√
log

1

ε
log

1

1− δ

)
.

In another direction, we can consider the simple binary
hypothesis testing problem of ρ = ρ0 versus ρ = ρ1, where
1 > ρ0 > ρ1 > 0. Once again, by modifying the parameters
for the test used in Theorem 7, we get a generalization of our
results for d = 1 to the case ρ1 > 0. Specifically, in this case,
the probability of error requirements as in (4) and (5) yield

1− e2kQ(r) −Q

(
r(ρ0 − θ)√

1− ρ2
0

)
− η ≥ 1− δ,

2k+1Q(r)Q

(
r(θ − ρ1)√

1− ρ2
1

)
≤ ε.

Proceeding in a similar manner as our earlier analysis and
upon setting θ ∈ (ρ1, ρ0) and

r2 =
2 ln 2

(ρ0 − ρ1)2

(√
(1− ρ2

1) log
1

ε
+ log ln

3

δ
+ 1

+

√
(1− ρ2

0) log
3

δ

)2

,

we obtain the following result.

Theorem 18. For d = 1, δ, ε ∈ (0, 1), 0 < ρ1 < ρ0 < 1, we
can find a distributed test for ρ = ρ0 versus ρ = ρ1 that uses
one-way communication of less than

1

(ρ0 − ρ1)2

(√
(1− ρ2

1) log
1

ε
+

√
(1− ρ2

0) log
1

δ

)2

+O

(√
log

1

ε
+ log ln

1

δ

√
log

1

δ

)
bits.

We note that [20] derived an upper bound for the error
exponent for this problem when communication length per
sample is fixed. While the result there was stated for error
exponent, the main bound [20, Equation (48)] shows that the
one-way communication needed for testing ρ = ρ0 versus
ρ = ρ1 must exceed(

(1− ρ1)2

(ρ0 − ρ1)2
− 1

)(
max

{
(1− δ) log

1

ε
, (1− ε) log

1

δ

}
− 1

)
,

which almost matches the communication requirement for
our scheme. However, we do not account for the number of
samples in our scheme, and it may not attain the upper bound
on the error exponent in [20].
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