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Abstract—We establish an upper bound on the rate of
codes for a wiretap channel with public feedback for a fixed
probability of error and secrecy parameter. As a corollary, we
obtain a strong converse for the capacity of a degraded wiretap
channel with public feedback. Our converse proof is based on a
reduction of active hypothesis testing for discriminating between
two channels to coding for wiretap channel with feedback.

I. INTRODUCTION

We consider secure message transmission over a wiretap
channel W : X → Y × Z with noiseless, public feedback.
For each transmission x ∈ X over W , the receiver observes
a random output Y ∈ Y and an eavesdropper observes
a correlated side-information Z ∈ Z , with probability
W (Y,Z|x). Furthermore, the receiver can send a feedback
to the transmitter over a noiseless channel. However, the
feedback channel is public and any communication sent over
it is available to the eavesdropper. The transmitter seeks to
send a message M to the receiver without revealing it to the
eavesdropper. For a given probability of error ε and a given
secrecy parameter δ, what is the maximum possible rate Cε,δ
of a transmitted message?

For a degraded wiretap channel W with no feedback,
the wiretap capacity C = infε,δ Cε,δ was established in the
seminal work of Wyner [19] where it was shown that

C = max
PX

I (X ∧ Y | Z) .

The capacity of a general wiretap channel was established
in [3]. Extensions to wiretap channels with general statistics
were considered in [4]. The model with feedback considered
here was introduced in [8] where it was noted that the
availability of a noiseless feedback can enable positive rates
of transmission over a wiretap channel with zero capacity
(see, also, [10]). However, the wiretap capacity with feedback
remains unknown in general; maxPX

I (X ∧ Y | Z) consti-
tutes an upper bound on it.

In this paper, we establish a strong version of this bound
and show that for ε+ δ < 1

Cε,δ ≤ max
PX

I (X ∧ Y | Z) ,
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thereby characterizing Cε,δ for all 0 < ε, δ < 1 for a degraded
wiretap channel. A partial strong converse for a degraded
wiretap channel was established in [11] for a restricted range
of ε, δ. Another strong converse for a degraded wiretap chan-
nel for the case when δ → 0 was established, concurrently to
this work, in [15]. In this work, we show a strong converse
for all values of ε and δ.

Our proof relies on a slight modification of a recent reduc-
tion of hypothesis testing to secret key agreement shown in
[17], [18]. Specifically, we show that a wiretap channel code
yields an active hypothesis test for distinguishing between
two channels [6]. Consequently, the rate of a wiretap code
is bounded above by the rate of the optimum exponent
of the probability of error of type II for discriminating a
channel W from another channel V such that V (y, z|x) =
V2(z|x)V1(y|z), given that the probability of error of type I
is less than ε + δ. This gives an upper bound on the length
of a wiretap code, which leads to the strong converse upon
using the characterization of the optimal exponent for channel
discrimination derived in [6]. This approach is along the lines
of meta-converse of [13], where a reduction of hypothesis
testing to channel coding was used to establish a finite-
blocklength converse for the channel coding problem (see,
also, [12] and [5, Section 4.6]).

Our main result is given in the next section. Section III and
IV contains a review of relevant results in binary hypothesis
testing and secret key agreement, respectively. The final
section contains a proof of our main result.

II. MAIN RESULT

We describe a generalization of the classic wiretap channel
coding problem [19], [3] that was considered in [8], [10], [1],
where, in addition to transmitting over the wiretap channel,
the terminals can communicate using a noiseless, public
feedback channel from the receiver to the transmitter.

A wiretap code for a discrete1 memoryless wiretap channel
W : X → Y × Z with feedback consists of (possibly
randomized) encoder mappings et : {1, ..., N} × F t → X ,
1 ≤ t ≤ n, feedback mappings ft : Yt → F , 0 ≤ t ≤
n − 1, and a decoder d : Yn → {1, ..., N}. For a random
message M ∼ unif{1, ..., N}, the protocol begins with
a feedback F0 from the receiver at t = 0. Subsequently,
at each time instance 1 ≤ t ≤ n − 1 the transmitter
sends Xt = et(M,F t−1) and the channel outputs (Yt, Zt)

1The restriction to discrete alphabet is cosmetic. Our results apply to
channels with continuous alphabet. In particular, our strong converse holds
for the Gaussian wiretap channel [9].



with probability W (Yt, Zt|Xt). The receiver observes Yt
and sends feedback Ft = ft(Y

t), and the eavesdropper
observes Zt. The protocol stops with a final transmission
Xn = en(M,Fn−1) over the channel and the subsequent
decoding M̂ = d(Y n) by the receiver. We denote by F the
overall feedback communication F0, ..., Fn−1.

The mappings ({et}nt=1, {ft}n−1t=0 , d) constitute an
(N,n, ε, δ) wiretap code if

P
(
M 6= M̂

)
≤ ε,

and
‖PMZnF − PM × PZnF‖1 ≤ δ,

where ‖P−Q‖1 denotes the variation distance between P
and Q given by

‖P−Q‖1 =
1

2

∑
x

|P(x)−Q(x)|.

A rate R > 0 is (ε, δ)-achievable if there exists an
(b2nRc, n, ε, δ) wiretap code for all n sufficiently large. The
(ε, δ)-wiretap capacity Cε,δ is the supremum of all (ε, δ)-
achievable rates.

Our main result in an upper bound on Cε,δ

Theorem 1. For 0 ≤ ε, δ with ε + δ < 1, the (ε, δ)-wiretap
capacity is bounded above as

Cε,δ ≤ max
PX

I (X ∧ Y | Z) .

For the special case of a degraded wiretap channel W with
W (y, z|x) = W1(y|x)W2(z|y), Theorem 1 yields a strong
converse for wiretap capacity.

Corollary 2. For a degraded wiretap channel W ,

Cε,δ =

max
PX

I (X ∧ Y | Z) , 0 < ε < 1− δ,

max
PX

I (X ∧ Y ) , 1− δ ≤ ε < 1.

Proof. For 0 < ε < 1 − δ, the result is an immediate
corollary of Theorem 1 and [19]2. For 1 − δ ≤ ε < 1, the
converse follows from the strong converse for the capacity
of a DMC with feedback (cf. [14]). Moving to the proof
of achievability, it suffices to restrict to ε + δ = 1. For this
case, achievability follows by randomizing between an (εn, 1)
wiretap code, εn → 0 as n→∞, and a (1, 0) wiretap code –
the randomizing bit is communicated as the public feedback
F0 by the receiver3

As a preparation for the proof of Theorem 1 given in
Section V, we review some results in hypothesis testing and
secret key agreement in the next two sections.

III. HYPOTHESIS TESTING

Consider a simple binary hypothesis testing problem with
null hypothesis P and alternative hypothesis Q, where P and

2While the secrecy criterion in [19] is different from variational secrecy
required here, the achievability result for the latter follows from the results
in [2], [4].

3Alternatively, the sender can transmit the randomizing bit over the
wiretap channel with neglible rate loss.

Q are distributions on the same alphabet X . Upon observing
a value x ∈ X , the observer needs to decide if the value
was generated by the distribution P or the distribution Q.
To this end, the observer applies a stochastic test T, which
is a conditional distribution on {0, 1} given an observation
x ∈ X . When x ∈ X is observed, the test T chooses the
null hypothesis with probability T(0|x) and the alternative
hypothesis with probability T (1|x) = 1 − T (0|x). For 0 ≤
ε < 1, denote by βε(P,Q) the infimum of the probability of
error of type II given that the probability of error of type I
is less than ε, i.e.,

βε(P,Q) := inf
T :P[T]≥1−ε

Q[T],

where

P[T] =
∑
x

P(x)T(0|x),

Q[T] =
∑
x

Q(x)T(0|x).

The following result credited to Stein characterizes the opti-
mum exponent of βε(Pn,Qn) where Pn = P × ... × P and
Qn = Q× ...×Q.

Lemma 3. (cf. [7, Theorem 3.3]) For every 0 < ε < 1, we
have

lim
n→∞

− 1

n
log βε(P

n,Qn) = D(P‖Q),

where D(P‖Q) is the Kullback-Leibler divergence given by

D(P‖Q) =
∑
x∈X

P(x) log
P(x)

Q(x)
,

with the convention 0 log(0/0) = 0.

Next, we review a problem of active hypothesis testing
where the distribution at each instance is determined by a
prior action. Specifically, given two DMCs W : X → Y
and V : X → Y , we seek to design a transmission-feedback
scheme such that by observing the channel inputs, channel
outputs, and feedback we can determine if the underlying
channel is W or V . Formally, an n-length active hypothe-
sis test consist of (possibly randomized) encoder mappings
et : F t → X , 1 ≤ t ≤ n, feedback mappings ft : Yt → F ,
0 ≤ t ≤ n − 1, and a conditional distribution T on {0, 1}
given Xn, Y n,F. On observing Xn, Y n,F, we detect the
null hypothesis W with probability T (0|Xn, Y n,F) and
alternative hypothesis V with probability T (1|Xn, Y n,F).
Analogous to βε(P,Q), the quantity βε(W,V, n), for 0 ≤
ε < 1, is the infimum of the probability of error of type II
over all n length active hypothesis tests for null hypothesis
W and alternative hypothesis V such that the probability of
error of type I is no more than ε.

The following analogue of Stein’s lemma for active hy-
pothesis testing was established in [6] (see, also, [14]).



Theorem 4 ([6]). For 0 < ε < 1,

lim
n
− 1

n
log βε(W,V, n) = max

PX

D
(
W
∥∥V ∣∣PX)

= max
x

D
(
Wx

∥∥Vx),
where Wx and Vx, respectively, denote the xth row of W
and V .

Remarkably, the exponent above is achieved without any
feedback, i.e., while feedback is available, it does not help
to improve the asymptotic exponent of βε(W,V, n).

IV. SECRET KEY AGREEMENT

In this section, we review two party secret key (SK)
agreement where parties observing random variables X and
Y communicate interactively over a public channel to agree
on a SK that is concealed from an eavesdropper with access
to the communication and a side-information Z.

Formally, the parties communicate using an interactive
communication F = F1, ..., Fr where F1 = F1(X), F2 =
F2(Y, F1), F3 = F3(X,F

2), F4 = F4(Y, F
3) and so on. A

random variable K = K(X,F) constitutes an (ε, δ)-SK if
there exists K̂ = K̂(Y,F) such that

P
(
K 6= K̂

)
≤ ε,

and

‖PKZF − Punif × PZF‖1 ≤ δ.

The following upper bound on the number of values k taken
by an (ε, δ)-SK K was shown in [17], [18]:

log k ≤ − log βε+δ+η(PXY Z ,QXY Z) + 2 log
1

η
,

for all 0 < η < 1− ε− δ, and all QXY Z = QX|ZQY |ZQZ .
Underlying the proof of this bound is an intermediate reduc-
tion argument in [17, Lemma 1] that relates SK agreement
to hypothesis testing. We recall this result below.

Theorem 5 ([17], [18] ). For 0 ≤ ε, δ, ε+ δ < 1, let random
variables K, K̂, and Z be such that P

(
K 6= K̂

)
≤ ε and

‖PKZ − Punif × PZ‖1 ≤ δ,

where Punif denotes a uniform distribution on k values.
Then, for every 0 < η < 1 − ε − δ and every QKK̂Z =
QK|ZQK̂|ZQZ ,

log k ≤ − log βε+δ+η(PKK̂Z ,QKK̂Z) + 2 log
1

η
.

V. PROOF OF MAIN RESULT

We present a converse result that applies for every fixed n
and is asymptotically tight, giving the strong converse result
of Theorem 1.

Theorem 6. For 0 ≤ ε, δ, ε + δ < 1, given an (N,n, ε, δ)-
wiretap code, we have

logN ≤ − log βε+δ+η(W,V, n) + 2 log
1

η
,

for all 0 < η < 1− ε− δ and all channels V : X → Y ×Z
such that V (y, z|x) = V2(z|x)V1(y|z).

Proof of Theorem 1. Theorem 1 follows form Theorems 6
and 4 upon noting that for W (y, z|x) =W2(z|x)W1(y|z, x)

min
V

max
PX

D
(
W
∥∥V ∣∣PX)

= min
V1

max
PX

D
(
W1

∥∥V1 ∣∣PXW2

)
= max

PX

min
V1

D
(
W1

∥∥V1 ∣∣PXW2

)
= max

PX

D
(
PY |ZX

∥∥PY |Z ∣∣PZX)
= max

PX

I (X ∧ Y | Z) ,

where PXY Z is given by PXW .

We need the following result to prove Theorem 6.

Lemma 7. For a wiretap channel V : X → Y×Z such that
V (y, z|x) = V2(z|x)V1(y|z), a random message M , and a
wiretap code, let M̂ = d(Y n) and F be the corresponding
feedback. Then, the induced distribution QMM̂ZnF satisfies
factorization condition

QMM̂ |ZnF = QM |ZnF ×QM̂ |ZnF.

Proof of Lemma 7. Denote by Ux and Uy , respectively, the
local randomness at the transmitter and the receiver, and by
F t the feedback (F0, ..., F

t). Thus, the encoder mapping et
is a (deterministic) function of (M,Ux, F

t−1) and the feed-
back mapping ft is a (deterministic) function of (Y t, Uy).
The proof entails a repeated application of the fact that
conditionally independent random variables remain so when
conditioned additionally on an interactive communication
(cf. [16]) and is completed by induction. Specifically, note
first that QMUxUy|F0

= QMUx|F0
QUy|F0

since (M,Ux) and
Uy are independent and F0 is an interactive communication.
Under the induction hypothesis

QMUxXt−1UyY t−1|Zt−1F t−1

= QMUxXt−1|Zt−1F t−1QUyY t−1|Zt−1F t−1 ,

we get

I
(
M,Ux, X

t ∧ Uy, Y t | Zt, F t−1
)

= I
(
M,Ux, X

t ∧ Uy, Y t−1 | Zt, F t−1
)

≤ I
(
M,Ux, X

t ∧ Uy, Y t−1 | Zt−1, F t−1
)

= I
(
M,Ux, X

t−1 ∧ Uy, Y t−1 | Zt−1, F t−1
)

= 0,

where the first equality and inequality follow since Yt and
Zt, respectively, are outputs of V1 for input Zt and V2
for input Xt, and the second equality holds since Xt =
et(M,Ux, F

t−1), which completes the proof.

Proof of Theorem 6. Given an (N,n, ε, δ) wiretap code,
a message M ∼ unif{1, ..., N} and its decoded value
M̂ = d(Y n) satisfy the conditions for Theorem 5 with
K = M, K̂ = M̂, and Z = (Zn,F). Letting QMM̂ZnF

be the distribution on (M, M̂, Zn,F) when the underlying



channel is V , by Lemma 7 and Theorem 5 we get

logN ≤ − log βε+δ+η(PMM̂ZnF,QMM̂ZnF) + 2 log
1

η
.

Note that a test for the simple binary hypothesis testing
problem for PMM̂ZnF and QMM̂ZnF along with the wiretap
code constitutes an active hypothesis test for W and V .
Therefore,

− log βε+δ+η(PMM̂ZnF,QMM̂ZnF)

≤ − log βε+δ+η(W,V, n),

which completes the proof.

ACKNOWLEDGEMENTS

MH is partially supported by a MEXT Grant-in-Aid for
Scientific Research (A) No. 23246071. MH is also par-
tially supported by the National Institute of Information and
Communication Technology (NICT), Japan. The Centre for
Quantum Technologies is funded by the Singapore Ministry
of Education and the National Research Foundation as part
of the Research Centres of Excellence programme.

REFERENCES

[1] R. Ahlswede and I. Csiszár, “Common randomness in information
theory and cryptography–part i: Secret sharing,” IEEE Trans. Inf.
Theory, vol. 39, no. 4, pp. 1121–1132, July 1993.

[2] I. Csiszár, “Almost independence and secrecy capacity,” Prob. Pered.
Inform., vol. 32, no. 1, pp. 48–57, 1996.

[3] I. Csiszar and J. Korner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, May
1978.

[4] M. Hayashi, “General nonasymptotic and asymptotic formulas in
channel resolvability and identification capacity and their application
to the wiretap channel,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp.
1562–1575, April 2006.

[5] ——, Quantum Information: An Introduction. Springer, 2006.
[6] ——, “Discrimination of two channels by adaptive methods and its

application to quantum system,” IEEE Trans. Inf. Theory, vol. 55, no. 8,
pp. 3807–3820, Aug 2009.

[7] S. Kullback, Information Theory and Statistics. Dover Publications,
1968.

[8] S. Leung-Yan-Cheong, “Multi-user and wiretap channels including
feedback,” Ph. D. Dissertation, Stanford University, 1976.

[9] S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wiretap chan-
nel,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, 1978.

[10] U. M. Maurer, “Secret key agreement by public discussion from
common information,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp.
733–742, May 1993.

[11] C. Morgan and A. Winter, ““pretty strong” converse for the quantum
capacity of degradable channels,” IEEE Trans. Inf. Theory, vol. 60,
no. 1, pp. 317–333, Jan 2014.

[12] H. Nagaoka, “Strong converse theorems in quantum information the-
ory,” in ERATO Workshop on Quantum Information Science 2001,Univ.
Tokyo, Tokyo, Japan, September 68, 2001, p. 33.

[13] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
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