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Abstract—We consider convex optimization on a d dimensional
space where coded gradients are sent over an additive Gaussian
noise channel with variance σ2. The codewords satisfy an average
power constraint P , resulting in the signal-to-noise ratio (SNR)
of P/σ2. Many schemes have been proposed for this problem,
termed over-the-air optimization, in recent years. We present
lower and upper bounds for the convergence rates for over-the-air
optimization. Our first result is a lower bound for the convergence
rate showing that any code must slowdown the convergence rate
by a factor of roughly

√
d/ log(1 + SNR). Next, we consider a

popular class of schemes called analog coding, where a linear
function of the gradient is sent. We show that a simple scaled
transmission analog coding scheme results in a slowdown in
convergence rate by a factor of

√
d(1 + 1/SNR). This matches the

previous lower bound up to constant factors for low SNR, making
the scaled transmission scheme optimal at low SNR. However,
we show that this slowdown is necessary for any analog coding
scheme. In particular, a slowdown in convergence by a factor of√
d remains even when SNR tends to infinity, a clear shortcoming

of analog coding schemes at high SNR. Remarkably, we present a
simple quantize-and-modulate scheme that uses Amplitude Shift
Keying and almost attains the optimal convergence rate at all
SNRs.

I. INTRODUCTION

Distributed optimization is a classic topic with decades of
work building basic theory. The last decade has seen increased
interest in this topic motivated by distributed and large scale
machine learning. For instance, parallel implementation of
training algorithms for deep learning models over multi-GPU
has become commonplace. In another direction, over the past
5 years or so, federated learning applications that require
building machine learning models for data distributed across
multiple users have motivated optimization algorithms that
limit communication from the users to a parameter server
(cf. [12]). Most recently, there has been a lot of interest in the
scenario where this communication is over-the-air, namely the
users are connected over a wireless communication channel
(cf. [6], [7]).

Many different optimization algorithms have been proposed
using different kind of codes. However, there is no work
addressing information-theoretic limits on the performance of
these algorithms. In particular, it remains unclear whether
simple analog schemes for communication over AWGN chan-
nel are optimal in any setting and whether there is any
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fundamental limitation to their performance. More broadly,
do we still need sophisticated error-correcting codes to attain
the optimal convergence rate for the optimization problem? In
this work, we address these questions for convex optimization
problems.

We establish an information-theoretic lower bound on the
convergence rate for any scheme for convex stochastic opti-
mization which shows that, for d−dimensional domain, there
is a

√
d/ log(1 + SNR) factor slowdown in convergence rate.

Furthermore, for low SNR, analog codes with stochastic gradi-
ent descent (SGD) attain this optimal rate. Next, we establish
a general lower bound on the performance of analog codes
and show that there is a factor

√
d(1 + 1/SNR) slowdown in

convergence rate when analog codes are used. Note that as
SNR goes to infinity one can expect that the convergence rate
should tend to the classic one. But our bound shows that for
analog codes, there is at least a factor

√
d slowdown even

as the SNR tends to infinity, making them suboptimal at high
SNR. Finally, we show that a simple quantize-and-modulate
SGD scheme that uses a vector quantizer for the gradients
and sends the quantized values using amplitude shift keying
(ASK) is almost rate optimal.

There has been a very interesting line of work on these
topics, including [6], [7], [9], [17]–[19], [21]–[23]. Most works
have considered the multiparty setting, with more complicated
channels than AWGN. In this paper, for simplicity, we restrict
to the two-terminal setting. But our qualitative results apply
to the multiparty setting as well.

Broadly, the gradient coding schemes proposed in these
works can be divided into two categories: analog and digital.
In more detail, in analog schemes, the coded gradients sent
over the noisy channel are a linear transformation of the
subgradient supplied by the oracle. Typical analog schemes
include scaling, sparsification, or direct transmission of gradi-
ents over a wireless channel. For instance, authors in [7] send
only top k gradient coordinates along with error feedback. In
[18], the subgradient estimates are scaled-down appropriately
to satisfy the power constraint. Each coordinate is then trans-
mitted over the Gaussian channel using one channel-use per
transmission. Similar scaling approaches are also presented
in [19], [21]–[23]. On the other hand, digital schemes rely
on gradient quantization and channel coding. For instance,
authors in [9] propose to quantize the subgradients using
stochastic quantization and the precision is chosen so that the
transmission rate is the same as channel capacity. Then they
are transmitted using any capacity-achieving code. In [23],
authors perform one-bit quantization of subgradients similar
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to signSGD [8] and send them over-the-air using OFDM
modulation, taking into account the frequency selective-fading
and inter-symbol interference.

In summary, most of the prior work either use analog
schemes or capacity achieving channel codes. Further, even
works such as [23] which use a quantize-and-modulate ap-
proach like our work, do not comment on the optimality of
the rate of convergence. In fact, in our proposed scheme, we
use a one dimensional signal constellation and let the number
of bits used to quantize grow roughly as log(1 + SNR) to get
optimal convergence rate.

In a slightly different direction, the variant of distributed
optimization with compressed subgradient estimates has also
been studied extensively, primarily to mitigate the slowdown in
convergence of distributed optimization procedures when full
gradients are communicated (see, for instance, [4], [13]–[15],
[20]). We build on the quantizers proposed in these works to
obtain a nearly optimal convergence rate algorithm.

For our lower bounds, we follow a similar strategy as [2]
(which in turn builds on [1], [3]) where optimization under
communication constraints (not over-the-air) was considered.
While the difficult oracles of these prior works yield our
general lower bound, for deriving the limitation for analog
schemes, we consider a new class of Gaussian oracles; see
Section IV for more details.

The rest of the paper is organized as follows. We setup the
problem in the next section and provide all our main results
in Sections III. All the proofs are given in Section IV and
concluding remarks are in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Functions and gradient oracles

For a convex set X ⊂ Rd with supx,y∈X ‖x − y‖ ≤ D,
we consider the minimization of an unknown convex function
f : X → R using access to a first order oracle O that reveals
noisy subgradient estimates for any queried point. We assume
that the oracle outputs ĝ(x) when a point x ∈ X is queried
satisfy the following conditions:

E [ĝ(x)|x] ∈ ∂f(x), (unbiasedness) (1)

E
[
‖ĝ(x)‖2|x

]
≤ B2, (mean square bounded oracle) (2)

where ∂f(x) ⊂ Rd denotes the set of subgradients of f at
input x. Denote by O the set of pairs (f,O) of functions and
oracles satisfying the conditions above.

B. Codes and Gaussian channel

In our setting, the gradient estimates are not directly avail-
able to the optimization algorithm π but must be coded for
error correction, sent over a noisy channel, and decoded to be
used by π. We consider fixed length codes of length ` with
average power less than P . Specifically, we consider (d, `, P )-
codes consisting of encoder mappings ϕ : Rd×U → R` such
that the codeword ϕ(ĝ, U) ∈ R` used to send the subgradient
estimate ĝ ∈ Rd satisfies the average power constraint

E
[
‖ϕ(ĝ, U)‖2

]
≤ `P, (3)

where U ∈ U denotes the public randomness used to ran-
domize the encoder and is assumed to be available to both ϕ
and optimization algorithm π. For convenience, we drop the
argument U from the notation of ϕ for the rest of the paper.
Denote by C` the set of all (d, `, P )-codes.

After the tth query by the algorithm, when the oracle
supplies a subgradient estimate ĝt, the codeword Ct = ϕ(ĝt)
is sent over an additive Gaussian noise channel. That is, after
the tth query to the oracle, the algorithm π observes Yt ∈ R`
given by

Yt(i) = Ct(i) + Zt(i), 1 ≤ i ≤ `, (4)

where {Zt(i)}i∈[`],t∈N is a sequence of i.i.d. random variables
with common distribution (0, σ2) – the Gaussian distribution
with mean 0 and variance σ2. We denote the signal-to-noise
ratio by SNR := P/σ2.

C. Over-the-air Optimization

We now describe an optimization algorithm π using
(d, `, P )-code ϕ. In any iteration t, the optimization algorithm
π, upon observing the previous channel outputs Y1, ..., Yt−1 ∈
R`, queries the oracle with point1 xt. The oracle gives
ĝt ∈ ∂f(xt), encodes it as ϕ(ĝ) and sends it over the Gaussian
channel. The algorithm π observes the output Yt ∈ R` of the
channel and moves to iteration t+ 1.

After T iterations, the algorithm outputs xT . Denote by
Π`,T the class of all algorithms using a (d, `, P )-code and
making T oracle queries.

We abbreviate the overall algorithm π with access to oracle
O and using encoder ϕ by πϕO. We call the tuple (π, ϕ)
consisting of the optimization algorithm and the encoding
procedure ϕ as an over-the-air optimization protocol. The
convergence error of this over-the-air optimization protocol
is given by

E(f, πϕO) := E [f(xT )]−min
x∈X

f(x).

We want to study how the convergence error goes to zero
as a function of the total number of channel uses N = T`.
We are allowed to use codes with any length ` but note
that increase in the length of encoding protocol will lead
to decrease in the number of oracle queries as the number
of channel uses is restricted to N . Similarly, while we are
allowed to use optimization algorithm which can make as
many as N queries to the oracle, increase the number of
queries will lead to a smaller block length encoding protocol.
Let Λ(N) := {π ∈ Π`,T , ϕ ∈ C` : ` · T ≤ N}. That is,
Λ(N) is the set of all over-the-air optimization protocols
using N channel transmissions. Then, the smallest worst-case
convergence error possible by using N channel transmissions
is given by E∗(N,X ) := inf(π,ϕ)∈Λ(N) sup(f,O)∈O E(f, πϕO).

1We assume that the downlink communication channel from the algorithm
to the oracle is noiseless.



Let X := {X : supx,y∈X ‖x−y‖ ≤ D}. In this paper, we will
characterize the following quantity2:

E∗(N) := sup
X∈X
E∗(N,X ). (5)

D. Special coding schemes

In addition to the general coding scheme above, we are
interested in the following two special classes of simple coding
schemes: Analog codes and ASK codes.

Definition II.1. A code is an analog code if the encoder
mapping ϕ is linear, i.e., when ϕ(x) = Ax for an `×d matrix
A, for any ` ≤ d. We allow for random matrices A as long as
they are independent of the observed gradient estimates. Also,
we denote by E∗analog(N) the minmax optimization error when
the class of (d, `, P )-encoding protocol is restricted to analog
schemes (with everything else remaining the same as in (5)).
Clearly, E∗analog(N) ≥ E∗(N).

Definition II.2. A code is an3 Amplitude Shift Keying (ASK)
code satisfying the average power constraint (3) if the range
of the encoder mapping is given by{

−
√
P +

(k − 1) · 2
√
P

2r − 1
: k ∈ [2r]

}
,

for some r ∈ N. Namely, the encoder first quantizes ĝ to r
bits and then uses ASK modulation for sending the quantized
subgradient estimate. Note that this is a code of length 1.

E. A benchmark from prior results

We recall results for the case SNR =∞, namely the classic
case when gradients estimates supplied by the oracle are
directly available to π, since perfect decoding is possible for
every channel-use. We denote the minmax error in this case
by E∗classic(N). In this standard setup for first-order convex
optimization, prior work gives a complete characterization of
the minmax error E∗classic(N); see, for instance, [16]. We
summarize these well-known results below.

Theorem II.3. For absolute constants c1 ≥ c0 > 0, we have

c0DB√
N
≤ E∗classic(N) ≤ c1DB√

N
.

Thus, the 1/
√
N convergence rate that SGD provides for

convex functions is optimal up to constant factors, with
dependence on the dimension d coming only through the
parameters D and B. This convergence rate will serve as a
basic benchmark for our results in this paper.

2Our goal behind considering the minmax cost in (5) is to ensure that the
lower bounds are independent of the geometry of set X . But our upper bound
techniques can handle an arbitrary, fixed X as well.

3For simplicity, we have considered AWGN channel for transmission. In
many practical communication systems, a two-dimensional signal space is
available through the in-phase and quadrature-phase components. For these
systems, our results for ASK code continue to hold with a QAM or QPSK
constellation based code.

III. MAIN RESULTS

A. Lower Bound for over-the-air optimization

We begin by proving a lower bound for over-the-air opti-
mization. The proof of the lower bound uses recent results
in information-constrained optimization given in [2], which in
turn builds on the results of [1], [3]. As is usual in other lower
bounds in stochastic optimization, our lower bound holds for
a sufficiently large N .

Theorem III.1. For some universal constant4 c ∈ (0, 1) and
N ≥ d

log(1+SNR) , we have5

E∗(N) ≥ cDB√
N
·

√
d

min{d, 1/2 log(1 + SNR)}
.

Our lower bound states that there is slowdown by a factor of√
d/ log(1 + SNR) over the classic convergence rate and that

no over-the-air optimization scheme can achieve the classic
convergence rate unless the SNR is sufficiently high.

B. Performance and limitations of analog schemes

Next, we show that a simple analog coding scheme attains
the optimal convergence rate at low SNR. Specifically, we
consider the scheme from [18] where the subgradient estimate
is scaled-down appropriately to satisfy the power constraint in
(3), sent coordinate-by-coordinate over d channel-uses, and
then scaled-up before using it in a gradient descent procedure.
We call this analog code the scaled transmission analog code.
Throughout the paper our first-order optimization algorithm
remains projected subgradient descent algorithm (PSGD), with
different codes and associated decoding schemes to get back
the transmitted subgradient estimate.

Theorem III.2. The over-the-air optimization procedure
(π, ϕ) comprising the scaled transmission analog code and
PSGD satisfies

sup
(f,O)∈O

E(f, πϕO) ≤ cDB√
N
·
√
d+

d

SNR
,

where c is a universal constant.

Since
√
d+ (d/SNR) ≤

√
2d/SNR ≤

√
3d/ log(1 + SNR)

for a sufficiently small SNR, we get the following corollary in
view of Theorem III.1 and the result above.

Corollary III.3. For SNR ∈ (0, 1) and N ≥ d
log(1+SNR) , we

have

E∗analog(N) = Θ

(
DB√
N
·

√
d

log(1 + SNR)

)
.

Interestingly, our next result shows that the scaled trans-
mission scheme is the optimal analog coding scheme up to
constant factors. In particular, while analog codes are optimal
for low SNR, they can be far from optimal at high SNR.

4The universal constants differ in different theorem statements.
5log(·) and ln(·) denote logarithms to the base 2 and base e, respectively.



Theorem III.4. For some universal constant c ∈ (0, 1) and
N ≥ d(1 + 1/SNR), we have

E∗analog(N) ≥ cDB√
N
·
√
d+

d

SNR
.

Theorem III.4 shows that in comparison to Theorem III.1
analog schemes can lead to a slowdown of

√
d for high

values of SNR. Even when SNR goes to infinity, we can’t
get the classic, dimension-free convergence rate back. Note
that the upper bound in Theorem III.2 matches the lower
bound of Theorem III.4 for large SNR, establishing that the
scaled transmission analog code of [18] is optimal among
analog coding schemes even at high SNR. We remark that the
convergence analysis in [18] required additional smoothness
assumptions and is not valid for our setting.
Remark 1. While our definition of analog schemes does
not include the top-k [5] analog coding schemes, we can
also derive a lower bound for such schemes. Even for such
analog schemes, similar lower bound as above holds and the
convergence rate does not match the classic convergence rate
at high SNR. We defer the details to the extended version [11].

C. Optimality of ASK
We now present a code that almost attains the convergence

rate in the lower bound of Theorem III.1. Our encoder ϕ
quantizes the noisy subgradient estimates by using a gain-
shape quantizer. That is, the encoder separately quantizes the
norm of the subgradient, its gain, and the normalized vector
obtained after dividing the subgradient by its norm, its shape.
The quantized gain and shape are sent over two different
channel-uses, both using ASK. We note that this scheme is not
strictly an ASK code since we use the channel twice. However,
this is just a technicality and can be avoided by a more tedious
analysis. To clearly present our ideas, we first present an ASK
code which works in a slightly more idealized setting, captured
by the following assumptions for the quantized subgradient:

1) (Perfect gain quantization) We assume that the norm of
subgradient vector can be perfectly sent to the algorithm
i.e., without any induced noise. Further, we don’t ac-
count for the channel-uses in sending the norm.

2) (An ideal shape quantizer) There exists an ideal shape6

quantizer which quantizes the shape of the vector to
a means square error of d/r and where the quantized
output is an unbiased estimate of the input.

Recall that our optimization algorithm is PSGD with an
appropriate decoding rule to decode the noisy codewords sent
over the channel.

Theorem III.5. Under Assumptions 1-2 above, there exists an
over-the-air optimization procedure (π, ϕ) with an ASK code
ϕ for which we have

sup
(f,O)∈O

E(f, πϕO) ≤ 2DB√
N

√√√√ d

min{d, log
(√

4SNR/ lnN + 1
)
}
.

6We call this an ideal quantizer because it would achieve the lower bound
for stochastic optimization [15], where the gradients are quantized to r-bits.

Furthermore, the ASK code quantizes the subgradient vector
to r = log

(√
4SNR/ lnN + 1

)
bits.

Remark 2 (Resolution grows with SNR). We remark that the
number of bits r used to express the subgradients in our
algorithm grows with SNR as r= log

(√
4SNR/ lnN + 1

)
bits,

namely the resolution must grow logarithmically with SNR.

We now state our complete result, without making ideal
assumptions. This time the gain is sent in one channel-use by
scaling it appropriately to satisfy the power constraint and the
shape is quantized using RATQ [15]. As noted above, this is
not formally an ASK code since we sent the quantized gain
over a separate channel use, but is the same in essence.

Theorem III.6. For d, SNR, and N satisfying7 ln∗(d/3) ≤ 7

and log
(√

4SNR/ lnN + 1
)
≥ 6, we have

E∗(N) ≤ 2DB√
N
·

√
d

min{d, r/48}
,

where r = log
(√

4SNR/ lnN + 1
)

. Furthermore, this bound
is attained by using an over-the-air optimization procedure
consisting of PSGD as the optimization algorithm and an ASK-
like encoding procedure.8

IV. PROOFS

We first prove our lower bounds, before coming to the
algorithms and upper bounds. For brevity, we only present
the main ideas and defer the further details to [cite].

A. The general recipe for proving lower bounds

We follow the recipe of [2] to prove our lower bounds. The
difficult functions we construct are the same as in previous
lower bounds for convex functions such as [3]. We consider
the domain X = {x ∈ Rd : ‖x‖∞ ≤ D/(2

√
d}, and consider

the following class of functions on X : For v ∈ {−1, 1}d, let

fv(x) :=
2Bδ√
d

d∑
i=1

∣∣∣∣x(i)− v(i)D

2
√
d

∣∣∣∣, ∀x ∈ X . (6)

Note that the gradient gv(x) of fv at x∈X is equal to
−2Bδv/

√
d, i.e., it is independent of x. We will fix our noisy

subgradient oracle Ov later. For any Ov , let ĝt denote the
output of the gradient oracle in iteration t. We will consider a
noisy oracle which outputs ĝt that are i.i.d. from a distribution
pv with mean −2Bδv/

√
d.

For a given code ϕ of length `, let Ct = ϕ(gt), t = 1, ..., T .
Let V ∼ Unif{−1, 1}d and Y T = (Y1, . . . , YT ) denote
output of the AWGN channel when the inputs are CT =

7ln∗ a denotes the smallest number of ln operations on a required to make it
less than 1. Also, we remark that the bound on ln∗(d/3) is just for simplicity,
and a similar convergence bound can be shown for any d > 0.

8In particular, the encoding procedure uses two channel-uses where in the
first channel-use, an ASK code is used to transmit the shape of the subgradient
vector, which is quantized to r bits, and in the second channel-use, the gain
of the subgradient vector is transmitted after an appropriate scaling.



(C1, . . . , CT ). The following lower bound can be established
by using results from9 [2, Lemma 3, 4]:

E [fV (xT )− fV (x∗V )] ≥ DBδ

6

[
1−

√√√√2

d

d∑
i=1

I(V (i) ∧ Y T )

]
,

(7)
By the definition of E∗(N), we have

E∗(N) ≥ E [fV (xT )− fV (x∗V )] . (8)

Thus, it only remains to bound the mutual-information term.
Note that this bound holds for any oracle Ov; we choose
difficult oracles satisfying (1) and (2) to derive our lower
bounds.

B. Proof of Theorem III.1

a) A difficult gradient oracle: For each fv in (6), con-
sider a gradient oracle Ov which outputs ĝt with independent
coordinates, each taking values −B/

√
d or B/

√
d with prob-

abilities (1 + 2δv(i))/2 and (1− 2δv(i))/2, respectively. The
parameter δ > 0 is to be chosen suitably later. Note that ĝt are
product Bernoulli distributed vectors with mean −2Bδv/

√
d.

b) Bounding the mutual-information: The following
strong data processing inequality was derived in [1] for
I
(
V (i) ∧ Y T

)
when the observations are product Bernoulli

vectors:∑
i∈[d]

I
(
V (i) ∧ Y T

)
≤ c′δ2 max

v∈{−1,1}d
max
ϕ∈C`

I
(
ĝT ∧ Y T

)
,

where c′ is some constant. Using the well-known formula
for AWGN capacity (see [10]), we can show using the data
processing inequality that∑

i∈[d]

I
(
V (i) ∧ Y T

)
≤ c′δ2N min{d, 1/2 log(1 + SNR)}.

The proof is completed by combining this bound with (7)
and (8), and maximizing the right-side of (7) by setting
δ=
√
d/(4c′N min{2d, log(1 + SNR)).

C. Proof of Theorem III.4

Consider the encoder ϕ(ĝt) = Aĝt corresponding to an
analog coding scheme for the functions in (6).

a) Gaussian oracle: For every fv and any query point xt,
consider a Gaussian oracle that outputs: ĝ(xt)=−2Bδv/

√
d+

G, where G ∼ N (0, B2/dId). For matrix A ∈ R`×d, the
subgradients are encoded as ϕ(ĝ(xt)) = Aĝ(xt) and sent over
the Gaussian channel.

b) Bounding the mutual-information: We proceed as
in the previous lower bound proof and first note that∑d
i=1 I(V (i) ∧ Y T ) ≤ I(V ∧ Y T ) since V (i) are i.i.d..

Further, since Y1, .., YT are i.i.d. conditioned on V , we have
I(V ∧ Y T ) ≤ TI(V ∧ Y1). Thus, it suffices to bound the
mutual-information I(V ∧ Y1) which we do in the following
lemma. Recall that the outputs Ct = (−2Bδ/

√
d)AV +AG,

where G denotes the Gaussian noise of the oracle, satisfies

9Note that the result in [2] is for a more general class of adaptive channels.

the power constraint
∑T
t=1 E

[
‖Ct‖22

]
≤ T`P , which implies

that Tr(AA>)B2/d ≤ `P/(1 + 4δ2). Further, Yt = Ct + Zt,
where Zt is the channel noise in ` uses.

Lemma IV.1. For A, G, V and Yt defined above, if
Tr(AA>)B2/d ≤ `P/(1 + 4δ2), then ∀t ∈ [T ], I(V ∧ Yt) ≤
(2 log e) · `δ2(1 + 1/SNR)−1.

The proof uses the fact that Gaussian maximizes entropy,
along with Jensen’s inequality; refer to [11] for more details.
Combining the previous bound with (7) and maximizing the
right-side with δ=

√
(1 + 1/SNR)d(log e)(16N), the proof is

completed using (8).

D. A general convergence bound for over-the-air optimization

For an `−length coding scheme ϕ : Rd → R`, recall that the
overall output of the channel Yt after the tth query is given by
(4). Our proposed schemes in sections IV-E and IV-F below
involve projecting back this channel output in R` to Rd. In
particular, as a part of the optimization algorithm π, Yt is
passed through a decoder mapping ψ : R` → Rd which gives
back a d−dimensional vector to be used by the first-order
optimization algorithm.

We use PSGD as the first-order optimization algorithm;
the overall over-the-air optimization procedure is described
in Algorithm 1. PSGD proceeds as SGD, with the additional
projection step where it projects the updates back to domain
X using the map ΓX (y) := minx∈X ‖x− y‖, ∀ y ∈ Rd.

1: for t = 0 to T − 1 do
2: Observe Yt given by (4)
3: xt+1 = ΓX (xt − ηtψ(Yt))

4: Output 1
T ·
∑T
t=1 xt

Algorithm 1: Over-the-air PSGD with encoder ϕ, decoder ψ

We now describe a convergence bound for over-the-air
optimization described in Algorithm 1. In our formulation, the
decoder ψ is a part of the optimization protocol π. However,
for concreteness, with a slight abuse of notation we now
denote the overall over-the-air optimization protocol using the
tuple (π, ϕ, ψ). The performance of (π, ϕ, ψ) is controlled by
the worst-case L2-norm α(π, ϕ, ψ) and the worst-case bias
β(π, ϕ, ψ) of the subgradient obtained after processing the
received vector, defined below:

α(π, ϕ, ψ) := sup
ĝ∈Rd:E[‖ĝ‖2]≤B2

√
E [‖ψ(Y )‖2],

β(π, ϕ, ψ) := sup
ĝ∈Rd:E[‖ĝ‖2]≤B2

‖E [(ĝ − ϕ(Y )] ‖,

where for all i ∈ [d], Y (i) satisfies (4). The next result is only
a minor modification of the standard PSGD proof and is very
similar to [15, Theorem 2.4].

Lemma IV.2. For the above PSGD equipped over-the-air
optimization protocol (π, ϕ, ψ) with N channel uses, we have

sup
(f,O)∈O

E(f, πϕO) ≤ D

(
α(π, ϕ, ψ)√

N/`
+ β(π, ϕ, ψ)

)
,



provided that the learning rate ηt is set to D

α(π,ϕ,ψ)
√
N/`

for

all iterations t ∈ [N/`].

This general convergence bound will establish our upper
bound proofs below.

E. Proof of Theorem III.2

a) Downscale the power: The subgradient vector is
multiplied by

√
Pd/B to meet the power constraints and sent

using d channel-uses,one channel-use per coordinate. Thus,
our encoded output is ϕ(ĝ(xt)) =

√
Pd/B · ĝ(xt).

b) Upscale the power: The optimization algorithm π
observes Yt given by (4) and re-scales it back by a fac-
tor B/

√
Pd. Thus, the decoding ψ rule at the algorithm’s

end is given by ψ(Yt) = B/
√
PdYt. It is easy to see

that E [ψ(Yt)|xt] = E [ĝ(xt)|xt] implying β(π, ϕ, ψ) = 0.
Also, using the independence of zero mean noise Zt and
ĝ(xt), E

[
‖ψ(Yt)‖2|xt

]
= E

[
‖ĝ(xt)‖2 +B2/(Pd)‖Zt‖2

]
which can be bounded by B2 + B2σ2/P . That implies
α(π, ϕ, ψ) ≤ B

√
(1 + 1/SNR) and the proof is completed

using Lemma IV.2.

F. Proof of Theorem III.5

Since ASK code is of length 1, we can have N queries in
N channel-uses. For the minimum-distance decoder ψ, denote
by AN the event where all the ASK constellation points sent
in N channel-uses are decoded correctly by the algorithm
and by AcN as its complement, i.e., AcN := ∪Nt=1{|Zt| ≥
2
√
P/(2r−1)}, where Zt is defined in (4). By the assumption

about the ideal quantizer, under the event AN which depends
only on the channel noise, Lemma IV.2 with α(π, ϕ, ψ) =√
d/r gives E [(f(xT )− f(x∗))1AN

] ≤ DB√
N

√
d
r . Fur-

ther, due to Gaussianity, P (AcN ) ≤ N exp(− 2SNR
(2r−1)2 ) and

that E
[
(f(xT )− f(x∗))1Ac

N

]
≤DB · P (AcN ), the proof is

completed upon setting r= log
(√

4SNR
lnN + 1

)
(which gives

P (AcN ) ≤ 1√
N

).

V. CONCLUDING REMARKS

We showed the optimality of analog schemes at low SNR

in Corollary III.3. However, Theorem III.4 shows that there is
a
√
d factor bottleneck that analog codes can’t overcome, no

matter how high the SNR is. Finally, we show in Theorem III.6
that ASK codes almost attain the optimal convergence rate at
all SNRs. It is important to note that more sophisticated coding
schemes can still help improving the small log logN and ln∗ d
factors seen in the performance of ASK codes.

In another direction, it is important to consider multiparty
algorithms and multiterminal communication over Gaussian
additive MAC channel. While the limitations for analog
schemes apply to that setting as well, we may need to use
lattice codes to extend our ASK coding scheme to a MAC.
This is an interesting direction for future work.
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