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Abstract

We consider over-the-air convex optimization on a d dimensional space where coded gradi-
ents are sent over an additive Gaussian noise channel with variance σ2. The codewords satisfy
an average power constraint P , resulting in the signal-to-noise ratio (SNR) of P/σ2. We de-
rive bounds for the convergence rates for over-the-air optimization. Our first result is a lower
bound for the convergence rate showing that any code must slowdown the convergence rate
by a factor of roughly

√
d/ log(1 + SNR). Next, we consider a popular class of schemes called

analog coding, where a linear function of the gradient is sent. We show that a simple scaled
transmission analog coding scheme results in a slowdown in convergence rate by a factor of√
d(1 + 1/SNR). This matches the previous lower bound up to constant factors for low SNR,

making the scaled transmission scheme optimal at low SNR. However, we show that this slow-
down is necessary for any analog coding scheme. In particular, a slowdown in convergence by
a factor of

√
d for analog coding remains even when SNR tends to infinity. Remarkably, we

present a simple quantize-and-modulate scheme that uses Amplitude Shift Keying and almost
attains the optimal convergence rate at all SNRs.
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1 Introduction
Distributed optimization is a classic topic with decades of work building basic theory. The last
decade has seen increased interest in this topic motivated by distributed and large scale machine
learning. For instance, parallel implementation of training algorithms for deep learning models over
multi-GPU has become commonplace. In another direction, over the past 5 years or so, federated
learning applications that require building machine learning models for data distributed across
multiple users have motivated optimization algorithms that limit communication from the users to
a parameter server (cf. [1]). Most recently, there has been a lot of interest in the scenario where
this communication is over-the-air, namely the users are connected over a wireless communication
channel (cf. [2, 3]).

Many different optimization algorithms have been proposed using different kinds of codes. How-
ever, there is no work addressing information-theoretic limits on the performance of these algo-
rithms. In particular, it remains unclear whether simple analog schemes for communication over
AWGN channel are optimal in any setting and whether there is any fundamental limitation to
their performance. More broadly, do we still need sophisticated error-correcting codes to attain the
optimal convergence rate for the optimization problem? In this work, we address these questions
for convex optimization problems.

We establish an information-theoretic lower bound on the convergence rate for any scheme for

convex stochastic optimization, which shows that, for d−dimensional domain, there is a

√
d

log(1 + SNR)

factor slowdown in convergence rate. Furthermore, for low SNR, analog codes with stochastic gra-
dient descent (SGD) attain this optimal rate. Next, we establish a general lower bound on the

performance of analog codes and show that there is a factor
√
d(1 + 1

SNR
) slowdown in convergence

rate when analog codes are used. Note that as SNR goes to infinity one can expect that the conver-
gence rate should tend to the classic one. But our bound shows that for analog codes there is at
least a factor

√
d slowdown even as the SNR tends to infinity, making them suboptimal at high SNR.

Finally, we show that a simple quantize-and-modulate SGD scheme that uses a vector quantizer
for the gradients and sends the quantized values using amplitude shift keying (ASK) is almost rate
optimal.

There has been a very interesting line of work on these topics, including [2–18]. Most works have
considered the multiparty setting, with more complicated channels than AWGN. In this paper, for
simplicity, we restrict to the two-terminal setting. But our qualitative results apply to the multiparty
setting as well.

Broadly, the gradient coding schemes proposed in these works can be divided into two categories:
analog and digital. In more detail, in analog schemes, the coded gradients sent over the noisy
channel are a linear transformation of the subgradient supplied by the oracle. Typical analog
schemes include scaling, sparsification, or direct transmission of gradients over a wireless channel.
For instance, authors in [2] send only top k gradient coordinates along with error feedback. In
[10], the subgradient estimates are scaled-down appropriately to satisfy the power constraint. Each
coordinate is then transmitted over the Gaussian channel using one channel use per transmission.
Similar scaling approaches are also presented in [9,11,13,14,17]. On the other hand, digital schemes
rely on gradient quantization and channel coding. For instance, authors in [7] propose to quantize
the subgradients using stochastic quantization, and the precision is chosen so that the transmission
rate is the same as channel capacity. Then they are transmitted using any capacity-achieving code.
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In [14], authors perform one-bit quantization of subgradients similar to signSGD [19] and send
them over-the-air using OFDM modulation, taking into account the frequency selective-fading and
inter-symbol interference.

In summary, most of the prior work either uses analog schemes or capacity-achieving channel
codes. Further, even works such as [14] which use a quantize-and-modulate approach like our work,
do not comment on the optimality of the rate of convergence. In fact, in our proposed scheme, we
use a one-dimensional signal constellation and let the number of bits used for quantization grow
roughly as log(1 + SNR) to get optimal convergence rate.

In a slightly different direction, the variant of distributed optimization with compressed subgra-
dient estimates has also been studied extensively, primarily to mitigate the slowdown in convergence
of distributed optimization procedures when full gradients are communicated (see, for instance,
[20–29,29–36]).

We build on the quantizers proposed in these works to obtain a nearly optimal convergence rate
algorithm.

For our lower bounds, we follow a similar strategy as [37] (which in turn builds on [38–40])
where optimization under communication constraints (not over-the-air) was considered. While the
difficult oracles of these prior works yield our general lower bound, for deriving the limitation for
analog schemes, we consider a new class of Gaussian oracles; see Section 4 for more details.

The rest of the paper is organized as follows. We set up the problem in the next section and
provide all our main results in Sections 3. All the proofs are given in Section 4 and concluding
remarks are in Section 6.

2 Problem formulation and preliminaries

2.1 Functions and gradient oracles
For a convex set X ⊂ Rd with supx,y∈X ‖x− y‖ ≤ D, we consider the minimization of an unknown
convex function f : X → R using access to a first order oracle O that reveals noisy subgradient
estimates for any queried point. We assume that the oracle outputs ĝ(x) when a point x ∈ X is
queried satisfy the following conditions:

E [ĝ(x)|x] ∈ ∂f(x), (unbiasedness) (1)

E
[
‖ĝ(x)‖2|x

]
≤ B2, (mean square bounded oracle) (2)

where ∂f(x) ⊂ Rd denotes the set of subgradients of f at input x. Denote by O the set of pairs
(f,O) of functions and oracles satisfying the conditions above.

2.2 Codes and Gaussian channel
In our setting, the gradient estimates are not directly available to the optimization algorithm π but
must be coded for error correction, sent over a noisy channel, and decoded to be used by π. We
consider fixed length codes of length ` with average power less than P . Specifically, we consider
(d, `, P )-codes consisting of encoder mappings ϕ : Rd×U → R` such that the codeword ϕ(ĝ, U) ∈ R`
used to send the subgradient estimate ĝ ∈ Rd satisfies the average power constraint

E
[
‖ϕ(ĝ, U)‖2

]
≤ `P, (3)
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where U ∈ U denotes the public randomness used to randomize the encoder and is assumed to be
available to both ϕ and optimization algorithm π. For convenience, we drop the argument U from
the notation of ϕ for the rest of the paper. Denote by C` the set of all (d, `, P )-codes.

After the tth query by the algorithm, when the oracle supplies a subgradient estimate ĝt, the
codeword Ct = ϕ(ĝt) is sent over an additive Gaussian noise channel. That is, after the tth query
to the oracle, the algorithm π observes Yt ∈ R` given by

Yt(i) = Ct(i) + Zt(i), 1 ≤ i ≤ `, (4)

where {Zt(i)}i∈[`],t∈N is a sequence of i.i.d. random variables with common distribution (0, σ2) –
the Gaussian distribution with mean 0 and variance σ2. We denote the signal-to-noise ratio by

SNR :=
P

σ2
.

2.3 Over-the-air Optimization
We now describe an optimization algorithm π using (d, `, P )-code ϕ. In any iteration t, the opti-
mization algorithm π, upon observing the previous channel outputs Y1, ..., Yt−1 ∈ R`, queries the
oracle with point1 xt. The oracle gives ĝt ∈ ∂f(xt), encodes it as ϕ(ĝ) and sends it over the Gaus-
sian channel. The algorithm π observes the output Yt ∈ R` of the channel and moves to iteration
t+ 1.

After T iterations, the algorithm outputs xT . Denote by Π`,T the class of all algorithms using
a (d, `, P )-code and making T oracle queries.

We abbreviate the overall algorithm π with access to oracle O and using encoder ϕ by πϕO. We
call the tuple (π, ϕ) consisting of the optimization algorithm and the encoding procedure ϕ as an
over-the-air optimization protocol. The convergence error of this over-the-air optimization protocol
is given by

E(f, πϕO) := E [f(xT )]−min
x∈X

f(x).

We want to study how the convergence error goes to zero as a function of the total number of
channel-uses N = T`. We are allowed to use codes with any length ` but note that an increase
in the length of encoding protocol will lead to a decrease in the number of oracle queries as the
number of channel-uses is restricted to N . Similarly, while we are allowed to use an optimization
algorithm that can make as many as N queries to the oracle, increasing the number of queries will
lead to a smaller block length encoding protocol. Let Λ(N) := {π ∈ Π`,T , ϕ ∈ C` : ` · T ≤ N}.
That is, Λ(N) is the set of all over-the-air optimization protocols using N channel transmissions.
Then, the smallest worst-case convergence error possible by using N channel transmissions is given
by E∗(N,X ) := inf(π,ϕ)∈Λ(N) sup(f,O)∈O E(f, πϕO). Let X := {X : supx,y∈X ‖x − y‖ ≤ D}. In this
paper, we will characterize the following quantity2:

E∗(N) := sup
X∈X
E∗(N,X ). (5)

1We assume that the downlink communication channel from the algorithm to the oracle is noiseless.
2Our goal behind considering the min-max cost in (5) is to ensure that the lower bounds are independent of the

geometry of set X . But our upper bound techniques can handle an arbitrary, fixed X as well.
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2.4 Special coding schemes
In addition to the general coding scheme above, we are interested in the following two special classes
of simple coding schemes: Analog codes and ASK codes.

Definition 2.1. A code is an analog code if the encoder mapping ϕ is linear, i.e., when ϕ(x) = Ax
for an `×dmatrixA, for any ` ≤ d. We allow for random matricesA as long as they are independent
of the observed gradient estimates. Also, we denote by E∗analog(N) the min-max optimization error
when the class of (d, `, P )-encoding protocol is restricted to analog schemes (with everything else
remaining the same as in (5)). Clearly, E∗analog(N) ≥ E∗(N).

Definition 2.2. A code is an3 Amplitude Shift Keying (ASK) code satisfying the average power
constraint (3) if the range of the encoder mapping is given by{

−
√
P +

(k − 1) · 2
√
P

2r − 1
: k ∈ [2r]

}
,

for some r ∈ N. Namely, the encoder first quantizes ĝ to r bits and then uses ASK modulation for
sending the quantized subgradient estimate. Note that this is a code of length 1.

2.5 A benchmark from prior results
We recall results for the case SNR =∞, namely the classic case when gradients estimates supplied
by the oracle are directly available to π, since perfect decoding is possible for every channel-use. We
denote the min-max error in this case by E∗classic(N). In this standard setup for first-order convex
optimization, prior work gives a complete characterization of the min-max error E∗classic(N); see,
for instance, [41]. We summarize these well-known results below.

Theorem 2.3. For absolute constants c1 ≥ c0 > 0, we have

c0DB√
N
≤ E∗classic(N) ≤ c1DB√

N
.

Thus, the 1/
√
N convergence rate that SGD provides for convex functions is optimal up to

constant factors, with dependence on the dimension d coming only through the parameters D and
B. This convergence rate will serve as a basic benchmark for our results in this paper.

3 Main Results

3.1 Lower Bound for over-the-air optimization
We begin by proving a lower bound for over-the-air optimization. The proof of the lower bound
uses recent results in information-constrained optimization given in [37], which in turn builds on
the results of [38,39]. As is usual in other lower bounds in stochastic optimization, our lower bound
holds for a sufficiently large N .

3For simplicity, we have considered AWGN channel for transmission. In many practical communication systems, a
two-dimensional signal space is available through the in-phase and quadrature-phase components. For these systems,
our results for ASK code continue to hold with a QAM or QPSK constellation-based code.
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Theorem 3.1. For some universal constant4 c ∈ (0, 1) and N ≥ d
log(1+SNR) , we have5

E∗(N) ≥ cDB√
N
·

√
d

min{d, 1/2 log(1 + SNR)}
.

Our lower bound states that there is slowdown by a factor of
√

d
log(1+SNR) over the classic

convergence rate and no over-the-air optimization scheme can achieve the classic convergence rate
unless the SNR is sufficiently high.

3.2 Performance and limitations of analog schemes
Next, we show that a simple analog coding scheme attains the optimal convergence rate at low
SNR. Specifically, we consider the scheme from [10] where the subgradient estimate is scaled-down
appropriately to satisfy the power constraint in (3), sent coordinate-by-coordinate over d channel-
uses, and then scaled-up before using it in a gradient descent procedure. We call this analog code
the scaled transmission analog code. Throughout the paper, our first-order optimization algorithm
remains projected subgradient descent algorithm (PSGD), with different codes and associated de-
coding schemes to get back the transmitted subgradient estimate.

Theorem 3.2. The over-the-air optimization procedure (π, ϕ) comprising the scaled transmission
analog code and PSGD satisfies

sup
(f,O)∈O

E(f, πϕO) ≤ cDB√
N
·
√
d+

d

SNR
,

where c is a universal constant.

Since
√
d+ (d/SNR) ≤

√
2d/SNR ≤

√
3d/ log(1 + SNR) for a sufficiently small SNR, we get the

following corollary in view of Theorem 3.1 and the result above.

Corollary 3.3. There exist universal constants c1, c2 such that for SNR ∈ (0, 1) (i.e., low SNR) and
N ≥ d

log(1+SNR) , we have

c1DB√
N
·

√
d

log(1 + SNR)
≤ E∗analog(N) ≤ c2DB√

N
·

√
d

log(1 + SNR)
.

Remark 1. We remark that a slightly different analog coding scheme can also guarantee the same
performance as the scaled transmission analog code given in Theorem 3.2 and performs better in
our experiments presented in Section 5. In this scheme, the noisy subgradient estimate is first
randomly rotated by a random matrix, and then only a few of its coordinates are used for the
gradient descent procedure, which, in turn, are sampled randomly. Both the random matrix and
random coordinate sampling are generated using shared randomness between the encoder and the
algorithm. Notice that such an algorithm needs only few channel-uses per descent step instead of
scaled transmission analog code that uses d channel-uses per descent step. We provide a detailed
description and analysis of this scheme in Section 4.5.

4The universal constants differ in different theorem statements.
5log(·) and ln(·) denote logarithms to the base 2 and base e, respectively.
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Interestingly, our next result shows that the scaled transmission scheme is the optimal analog
coding scheme up to constant factors. In particular, while analog codes are optimal for low SNR,
they can be far from optimal at high SNR.

Theorem 3.4. For some universal constant c ∈ (0, 1) and N ≥ d(1 + 1/SNR), we have

E∗analog(N) ≥ cDB√
N
·
√
d+

d

SNR
.

Note that for small SNR, we have 1 + 1
SNR
≈ 1

log(1+SNR) , and thus, Theorem 3.4 shows that analog
codes are optimal at low SNR. Theorem 3.4 also shows that in comparison to Theorem 3.1 analog
schemes can lead to a slowdown of

√
d for high values of SNR. Even when SNR goes to infinity,

we can’t get the classic, dimension-free convergence rate back. Note that the upper bound in
Theorem 3.2 matches the lower bound of Theorem 3.4 for large SNR, establishing that the scaled
transmission analog code of [10] is optimal among analog coding schemes even at high SNR. We
remark that the convergence analysis in [10] required additional smoothness assumptions and is not
valid for our setting.
Remark 2. While our definition of analog schemes does not include the top-k (see, for instance,
[42] and the references therein) analog coding schemes, we can also derive a lower bound for such
schemes. Even for such analog schemes, similar lower bound as above holds and the convergence
rate does not match the classic convergence rate at high SNR. We defer the details to the Appendix
A.

3.3 Optimality of ASK
We now present a code that almost attains the convergence rate in the lower bound of Theorem 3.1.
Our encoder ϕ quantizes the noisy subgradient estimates by using a gain-shape quantizer (cf.[43]).

Definition 3.5 (Gain-shape quantizer). A Quantizer Q is defined to be a gain-shape quantizer if
it has the following form

Q(Y ) = Qg(‖Y ‖2) ·Qs(Y/‖Y ‖2),

where Qg is any R→ R quantizer and Qs is any Rd → Rd quantizer.

That is, the encoder separately quantizes the norm of the subgradient, its gain, and the nor-
malized vector obtained after dividing the subgradient by its norm, its shape. The quantized gain
and shape are sent over two different channel-uses using ASK code. We note that this scheme is
not strictly an ASK code since we use the channel twice. However, this is just a technicality and
can be avoided by a more tedious analysis.

To clearly present our ideas, we first present an ASK code which works in an ideal setting,
captured by the following assumptions for the quantized subgradient:

1. (Perfect gain quantization) We assume that the norm of subgradient vector can be perfectly
sent to the algorithm i.e., without any induced noise. Further, we don’t account for the
channel-uses in sending the norm.

2. (An ideal shape quantizer) There exists an ideal shape6 quantizer which quantizes the shape
of the vector to a mean square error of d/r and where the quantized output is an unbiased
estimate of the input.

6We call this an ideal quantizer because such a quantizer would achieve the lower bound for stochastic optimization
in [28], where the gradients are quantized to r-bits.
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Recall that our optimization algorithm is PSGD with an appropriate decoding rule to decode the
noisy codewords sent over the channel.

Theorem 3.6. Under Assumptions 1-2 above, there exists an over-the-air optimization procedure
(π, ϕ) with an ASK code ϕ for which we have

sup
(f,O)∈O

E(f, πϕO) ≤ 2DB√
N
·
√√√√ d

min{d, log
(√

4SNR
lnN + 1

)
}
.

Furthermore, the ASK code quantizes the subgradient vector to r = log
(√

4SNR
lnN + 1

)
bits.

Remark 3 (Resolution grows with SNR). We remark that the number of bits r used to express the

subgradients in our algorithm grows with SNR as r = log
(√

4SNR
lnN + 1

)
bits, namely the resolution

must grow logarithmically with SNR.

We now state our complete result, without making ideal assumptions. This time the gain is sent
in one channel-use by simply scaling the gain value appropriately to satisfy the power constraint,
which is similar to the scaled transmission analog code from Theorem 3.2. For quantizing the shape,
our scheme uses the quantizer RATQ from [28]. Again note above, this scheme is not formally an
ASK code since we send the gain over a separate channel. Nonetheless, they are similar, in essence,
to ASK codes as only the transmission of gain, a scalar, is not accounted for in the ASK code.

Theorem 3.7. For d, SNR, and N satisfying7 ln∗(d/3) ≤ 7 and log
(√

4SNR
lnN + 1

)
≥ 6, we have

E∗(N) ≤ 2DB√
N
·

√
d

min{d, r48}
,

where r = log

(√
4SNR

lnN
+ 1

)
. Furthermore, this bound is attained by using an over-the-air opti-

mization procedure consisting of PSGD as the optimization algorithm and an ASK-like encoding
procedure.8

4 Proofs
We first prove our lower bounds before coming to the algorithms and upper bounds.

7ln∗ a denotes the smallest number of ln operations on a required to make it less than 1. Also, we remark that
we can prove a similar convergence bound without any upper bound on ln∗(d/3); we only make this assumption to
simplify the upper bound expression.

8In particular, the encoding procedure uses two channel-uses for transmitting the subgradient estimate. In the
first channel-use, an ASK code is used to transmit the shape of the subgradient vector, which is quantized to
r = log

(√
4SNR
lnN

+ 1
)
bits. In the second channel-use, the gain of the subgradient vector is transmitted after scaling

it appropriately to satisfy the power constraint.
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4.1 Summary of the method used for proving lower bounds
We follow the recipe of [37] to prove our lower bounds. The difficult functions we construct are
the same as in previous lower bounds for convex functions such as [38]. We consider the domain
X = {x ∈ Rd : ‖x‖∞ ≤ D/(2

√
d}, and consider the following class of functions on X : For

v ∈ {−1, 1}d, let

fv(x) :=
2Bδ√
d

d∑
i=1

∣∣∣∣x(i)− v(i)D

2
√
d

∣∣∣∣, ∀x ∈ X . (6)

Note that the gradient gv(x) of fv at x ∈ X is equal to −2Bδv/
√
d, i.e., it is independent of x.

We will fix our noisy subgradient oracle Ov later. For any Ov, let ĝt denote the output of the
gradient oracle in iteration t. We will consider a noisy oracle which outputs ĝt that are i.i.d. from
a distribution pv with mean −2Bδv/

√
d.

For a given code ϕ of length `, let Ct = ϕ(gt), t = 1, ..., T . Let V ∼ Unif{−1, 1}d and
Y T = (Y1, . . . , YT ) denote output of the AWGN channel when the inputs are CT = (C1, . . . , CT ).
The following lower bound can be established by using results from9 [37, Lemma 3, 4]:

E [fV (xT )− fV (x∗V )] ≥ DBδ

6

[
1−

√√√√2

d

d∑
i=1

I(V (i) ∧ Y T )

]
. (7)

By the definition of E∗(N), we have

E∗(N) ≥ E [fV (xT )− fV (x∗V )] . (8)

Thus, it only remains to bound the mutual-information term. Note that this bound holds for any
oracle Ov; we choose difficult oracles satisfying (1) and (2) to derive our lower bounds.

4.2 Proof of Theorem 3.1
A difficult gradient oracle For each fv in (6), consider a gradient oracle Ov which outputs ĝt
with independent coordinates, each taking values −B/

√
d or B/

√
d with probabilities (1+2δv(i))/2

and (1− 2δv(i))/2, respectively. The parameter δ > 0 is to be chosen suitably later. Note that ĝt
are product Bernoulli distributed vectors with mean −2Bδv/

√
d.

Bounding the mutual-information The following strong data processing inequality was de-
rived in [39] for I

(
V (i) ∧ Y T

)
when the observations are product Bernoulli vectors:∑

i∈[d]

I
(
V (i) ∧ Y T

)
≤ c′δ2 max

v∈{−1,1}d
max
ϕ∈C`

I
(
ĝT ∧ Y T

)
,

where c′ is some constant. Using the well-known formula for AWGN capacity (see [44]), we can
show using the data processing inequality that∑

i∈[d]

I
(
V (i) ∧ Y T

)
≤ c′δ2N min{d, 1/2 log(1 + SNR)}.

The proof is completed by combining this bound with (7) and (8), and maximizing the right-side
of (7) by setting δ=

√
d/(4c′N min{2d, log(1 + SNR)).

9Note that the result in [37] is for a more general class of adaptive channels.
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4.3 Proof of Theorem 3.4
Consider the encoder ϕ(ĝt) = Aĝt corresponding to an analog coding scheme for the functions in
(6).

Gaussian oracle For every fv and any query point xt, consider a Gaussian oracle that outputs:
ĝ(xt)= − 2Bδv/

√
d + G, where G ∼ N (0, B2/dId). For matrix A ∈ R`×d, the subgradients are

encoded as ϕ(ĝ(xt)) = Aĝ(xt) and sent over the Gaussian channel.

Bounding the mutual-information We proceed as in the previous lower bound proof and
first note that

∑d
i=1 I(V (i) ∧ Y T ) ≤ I(V ∧ Y T ) since V (i) are i.i.d. Further, since Y1, .., YT

are i.i.d. conditioned on V , we have I(V ∧ Y T ) ≤ TI(V ∧ Y1). Thus, it suffices to bound the
mutual information I(V ∧ Y1) which we do in the following lemma. Recall that the outputs
Ct = (−2Bδ/

√
d)AV + AG, where G denotes the Gaussian noise of the oracle, satisfies the power

constraint
∑T
t=1 E

[
‖Ct‖22

]
≤ T`P , which implies that Tr(AA>)B2/d ≤ `P/(1 + 4δ2). Further,

Yt = Ct + Zt, where Zt is the channel noise in ` uses.

Lemma 4.1. For A, G, V and Yt defined above, if Tr(AA>)B2

d ≤ `P
1+4δ2 , then ∀t ∈ [T ],

I(V ∧ Yt) ≤ (2 log e) · `δ2(1 + 1/SNR)−1.

Proof. Since Ct = (−2Bδ/
√
d)AV + AG, we have E

[
CtC

>
t

]
=
(
B2(1+4δ2)

d

)
AA> which implies

E
[
‖Ct‖2

]
= Tr(E

[
CtC

>
t

]
) =

(
B2(1 + 4δ2)

d

)
Tr(AA>) ≤ `P. (9)

As Zt is independent of Ct, we also have

E
[
YtY

>
t

]
=

(
B2(1 + 4δ2)

d

)
AA> + σ2I`. (10)

By definition of mutual-information and the fact that Gaussian maximizes the entropy,

I(V ∧ Yt) = h(Yt)− h(Yt|V ) ≤ 1

2
log

det
(
B2(1+4δ2)

d AA> + σ2I`

)
det
(
B2

d AA> + σ2I`
) .

Let λ1, . . . , λ` be the eigen values of AA>. Then, right-side can be further bounded as

I(V ∧ Yt) ≤
1

2

∑̀
i=1

log
B2(1+4δ2)

d λi + σ2

B2

d λi + σ2

≤ `

2
log

B2(1+4δ2)
`d Tr(AA>) + σ2

B2

`d Tr(AA>) + σ2

≤ (2 log e) · `δ2

1 + `dσ2/(B2Tr(AA>))

≤ (2 log e) · `δ2

1 + SNR−1 ,
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where the first inequality is the Hadamard inequality; the second is Jensen’s inequality; the third
one uses log(1 + x) ≤ x log e; and the last inequality follows from (9).

Combining the previous bound with (7) and maximizing the right-side using δ=
√

(1 + 1
SNR

) d
((log e)·16N) ,

the proof is completed using (8).

4.4 A general convergence bound for over-the-air optimization
For an `-length coding scheme ϕ : Rd → R`, recall that the overall output of the channel Yt after
the tth query is given by (4). Our proposed schemes in Sections 4.5 and 4.6 below involve projecting
back this channel output in R` to Rd. In particular, as a part of the optimization algorithm π, Yt
is passed through a decoder mapping ψ : R` → Rd which gives back a d−dimensional vector to be
used by the first-order optimization algorithm.

We use PSGD as the first-order optimization algorithm; the overall over-the-air optimization
procedure is described in Algorithm 1. PSGD proceeds as SGD, with the additional projection step
where it projects the updates back to domain X using the map ΓX (y) := minx∈X ‖x−y‖, ∀ y ∈ Rd.

1: for t = 0 to T − 1 do
2: Observe Yt given by (4)
3: xt+1 = ΓX (xt − ηψ(Yt))

4: Output 1
T ·
∑T
t=1 xt

Algorithm 1: Over-the-air PSGD with encoder ϕ, decoder ψ

We now derive a convergence bound for over-the-air optimization described in Algorithm 1. In
our formulation, the decoder ψ is a part of the optimization protocol π. However, for concreteness,
with a slight abuse of notation we now denote the overall over-the-air optimization protocol using
the tuple (π, ϕ, ψ). The performance of (π, ϕ, ψ) is controlled by the worst-case L2-norm α(π, ϕ, ψ)
and the worst-case bias β(π, ϕ, ψ) of the subgradient obtained after processing the received vector,
defined below:

α(π, ϕ, ψ) := sup
ĝ∈Rd:E[‖ĝ‖2]≤B2

√
E [‖ψ(Y )‖2], (11)

β(π, ϕ, ψ) := sup
ĝ∈Rd:E[‖ĝ‖2]≤B2

‖E [(ĝ − ψ(Y )] ‖, (12)

where for all i ∈ [d], Y (i) satisfies (4). The next result is only a minor modification of the standard
PSGD proof and is very similar to [28, Theorem 2.4].

Lemma 4.2. For the above PSGD equipped over-the-air optimization protocol (π, ϕ, ψ) with N
channel-uses, we have

sup
(f,O)∈O

E(f, πϕO) ≤ D

(
α(π, ϕ, ψ)√

N/`
+ β(π, ϕ, ψ)

)
,

provided that the learning rate ηt is set to D

α(π,ϕ,ψ)
√
N/`

for all iterations t ∈ [N/`].

This general convergence bound will be used in our upper bound proofs below.
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4.5 Proof of Theorem 3.2
4.5.1 The scaled transmission analog scheme

Downscale the power The subgradient vector is multiplied by
√
Pd/B to meet the power

constraints and sent using d channel-uses, one channel-use per coordinate. Thus, our encoded
output is ϕ(ĝ(xt)) =

√
Pd/B · ĝ(xt).

Upscale the power The optimization algorithm π observes Yt given by (4) and re-scales it
back by a factor B/

√
Pd. Thus, the decoding ψ rule at the algorithm’s end is given by ψ(Yt) =

B/
√
PdYt. It is easy to see that E [ψ(Yt)|xt] = E [ĝ(xt)|xt] implying β(π, ϕ, ψ) = 0. Also, using

the independence of zero mean noise Zt and ĝ(xt), E
[
‖ψ(Yt)‖2|xt

]
= E

[
‖ĝ(xt)‖2 +B2/(Pd)‖Zt‖2

]
which can be bounded by B2 +B2σ2/P . That implies α(π, ϕ, ψ) ≤ B

√
(1 + 1/SNR) and the proof

is completed using Lemma 4.2.

4.5.2 The sampled version of scaled transmission analog scheme

Rotate randomly At each iteration t, the subgradient vector is rotated by multiplying it with
a random matrix

R :=
1√
d
HD,

where H is a (d×d)−Walsh-Hadamard matrix [45]10 and D is diagonal matrix with each non-zero
entry generated uniformly from {+1,−1}. The diagonal matrix is generated via public randomness
between the encoder and the algorithm, and can therefore be used for decoding at the algorithms
end.
From [28, Lemma 5.8], each coordinate Rĝt(i) of the rotated subgradient Rĝt satisfies

E
[
Rĝt(i)

2
]
≤ B2

d
, ∀i ∈ [d].

Subsampling Using shared randomness between the encoder and the decoder, a set S ⊆ [d] is
sampled uniformly over all subsets of [d] of cardinality `. The rotated subgradient vector is sampled
at S and is denoted as

g̃R,S,t :=

d∑
i=1

Rĝt(i)1{i∈S} · ei.

Downscale the power The subsampled vector g̃R,S,t is multiplied by
√
Pd/B to meet the power

constraints and sent using ` channel-uses, one channel-use per coordinate. Thus, the encoded output
is ϕ(ĝ(xt)) =

√
Pd/B · g̃R,S,t.

Upscale the power The optimization algorithm π observes Yt given by (4) and re-scales it back
by a factor dB

`
√
Pd
· R−1. Thus, the decoding ψ rule at the algorithm’s end is given by ψ(Yt) =

10We assume that d is a power of 2.
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dB
`
√
Pd
·R−1Yt. It is easy to see that

E [ψ(Yt)|xt] = E

[
d

`
·R−1

(
d∑
i=1

Rĝt(i)1{i∈S} · ei

)
|xt

]

= E
[
ĝtE

[
d

`
1{i∈S}

]
|xt
]

= E [ĝ(xt)|xt] ,

implying β(π, ϕ, ψ) = 0. Also, using the independence of AWGN noise Zt ∼ N (0, σ2I`) and ĝ(xt),
we get

E
[
‖ψ(Yt)‖2|xt

]
=
d2

`2
E
[
‖ĝ(xt)‖21{i∈S}|xt

]
+
dB2

P`2
‖Zt‖2

≤ B2d

`

(
1 +

σ2

P

)
,

which implies α(π, ϕ, ψ) ≤ B
√

d
`

(
1 + 1

SNR

)
, and the proof is complete using Lemma 4.2.

4.6 Proof of Theorem 3.6
Since an ASK code is of length 1, we can have N queries in N channel-uses. For the minimum-
distance decoder ψ, denote by AN the event where all the ASK constellation points sent in N
channel-uses are decoded correctly by the algorithm and by AcN as its complement, i.e.,

AcN :=

N⋃
t=1

{
|Zt| ≥

2
√
P

(2r − 1)

}
,

where Zt is defined in (4). By the assumptions about an ideal quantizer (c.f. Section 3.3), under
the event AN , which depends only on the channel noise, Lemma 4.2 with α(π, ϕ, ψ) =

√
d/r gives

E [(f(xT )− f(x∗))1AN
] ≤ DB√

N
·
√
d

r
.

Further, due to Gaussian11 noise, we have P (AcN ) ≤ N exp(− 2P
σ2(2r−1)2 ) = N exp(− 2SNR

(2r−1)2 ). Setting

r = log
(√

4SNR
lnN + 1

)
, we have P (AcN ) ≤ 1√

N
, which leads to

E [(f(xT )− f(x∗))] = E [(f(xT )− f(x∗))1AN
] + E

[
(f(xT )− f(x∗))1Ac

N

]
≤ DB√

N
·
√
d

r
+
DB√
N

≤ 2
DB√
N
·

√
d

min{d, r}
.

11In fact, the proof requires noise to be only sub-Gaussian, a weaker assumption than being Gaussian.
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4.7 Proof of Theorem 3.7
For communication, we consider an ASK code in [−

√
P ,
√
P ] with the following 2r−constellation

points {
−
√
P +

(i− 1) · 2
√
P

2r − 1
: i ∈ [2r]

}
, (13)

for some r ∈ N.
We separately send the gain ‖ĝt‖ ∈ R and shape ĝt

‖ĝt‖ ∈ Rd of subgradient ĝt. The encoder ϕ
is a tuple which consists of separate gain and shape encoders ϕg and ϕs, i.e., ϕ = (ϕg, ϕs). The
internal randomness used in these gain and shape encoders will be independent, which will result
in the output of these encoders being conditionally independent given any subgradient estimate ĝt.
Similarly, the decoding mechanism is also a tuple consisting of two separate decoders ψg and ψs
that are used to decode the transmitted gain and shape values, respectively. The final decoded
output of ψ is taken to be the product of the decoded outputs of ψg and ψs.

1. Communicating the gain. Recall that the gain sub-encoders above need to satisfy the
average power constraint (9) from Section 2.2.

The gain ‖ĝt‖ is multiplied by
√
P/B to meet the power constraints and sent in one channel-use.

Thus, our encoded output is ϕg(‖ĝt‖) = (
√
P/B)‖ĝt‖. The optimization algorithm π observes the

channel output Yg,t given by
Yg,t = ϕg(‖ĝt‖) + Zg,t,

where Zg,t ∼ N (0, σ2) denotes the Gaussian noise, and re-scales it back by a factor B/
√
P , i.e.,

ψg(Yg,t) = ‖ĝt‖+B/
√
P · Zg,t.

We evaluate the performance measures α(π, ϕg, ψg) and β(π, ϕg, ψg), viewing the gain ‖ĝt‖ as a
1-dimensional subgradient. Similar to (11), (12) we have,

α(π, ϕg, ψg) := sup
‖ĝt‖∈R:E[‖ĝt‖2]≤B2

√
E [‖ψg(Yg,t)‖2],

β(π, ϕg, ψg) := sup
‖ĝt‖∈R:E[‖ĝt‖2]≤B2

‖E [‖ĝt‖ − ψg(Yg,t)] ‖.

Specifically, it is easy to see that

α(π, ϕg, ψg) =
√
B2 +B2/SNR, β(π, ϕg, ψg) = 0. (14)

2. Quantizing the shape. We denote the shape ĝt/‖ĝt‖ by ĝt,shape. In every iteration t,
L2−norm of ĝt,shape is almost surely bounded by 1. Accordingly, to quantize the shape, we are inter-
ested in quantizers for almost surely bounded oracles. We use a subsampled version of RATQ [28,
Section 3.5] to quanitze the shape, as this quantizer is almost optimal for communication-constrained
optimization with almost surely bounded oracles. The encoder ϕs is composed of four compo-
nents: rotation, subsampling, tetra-iterated adaptive quantization and mapping to ASK code, which
we describe below.
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Rotation. Assuming that d is a power of 2, the subgradient shape ĝt,shape is rotated by
multiplying it with a random matrix

R :=
1√
d
HD,

where H is a (d × d)− Walsh-Hadamard matrix [45] and D is a diagonal matrix with diagonal
entries generated uniformly from {+1,−1}. The diagonal matrix is generated via public randomness
between the encoder and the algorithm, and can therefore be used for decoding at the algorithms
end.

Note that since R is a unitary matrix, the norm remains unaltered even after rotation, i.e.,
‖Rĝt,shape‖ = ‖ĝt,shape‖ = 1 a.s..

Subsampling. Using shared randomness between the encoder and the decoder, a set U ∈ [d]
is sampled uniformly over all subsets of [d] of cardinality µd. The rotated shape vector is sampled
at U and is denoted by

g̃R,U,t := {Rĝt,shape(i)}i∈U .
We now quantize every coordinate of g̃R,U,t ∈ Rµd using the following.

Tetra-iterated Adaptive Quantization. Consider a sequence of intervals {[−Mi,Mi]}i∈[hs]

where M1, . . . ,Mhs
grows using12 tetra-iteration:

M2
1 =

3

d
,M2

i =
3

d
· e∗(i−1), i ∈ [hs],

where parameter hs satisfies log hs = d[log(1 + ln∗(d/3))e. We choose these values such that the
largest interval must contain ‖g̃R,U,t‖∞, i.e., 1 ≤Mhs .

For each coordinate g̃R,U,t(i), the quantizer first identifies the smallest index j ∈ [hs] such that
|g̃R,U,t(i)| ≤ Mj and then represent g̃R,U,t(i) using a uniform ks-level shape quantizer QMj ,ks in
interval [−Mj ,Mj ]. The ks levels of shape quantizer are given by

BMj ,ks(l) := −Mj + (l − 1) · 2Mj

ks − 1
, l ∈ [ks].

These levels partition [−Mj ,Mj ] into ks − 1 sub-intervals {[BMj
(l), BMj

(l + 1)]}l∈[ks−1]. The
uniform quantizer locates a sub-interval that contains g̃R,U,t(i), say [BMj

(l∗), BMj
(l∗+ 1)] for some

l∗ ∈ [ks − 1], and outputs

QMj ,ks(g̃R,U,t(i)) =


BMj (l∗), w.p.

BMj
(l∗+1)−g̃R,U,t(i)

BMj
(l∗+1)−BMj

(l)

BMj (l∗ + 1), w.p.
g̃R,U,t(i)−BMj

(l∗)

BMj
(l∗+1)−BMj

(l)

.

This is done for all µd coordinates and we represent the output as Q(g̃R,U,t) given by

Q(g̃R,U,t) := (QMj(i)
(g̃R,U,t(i)) : 1 ≤ i ≤ µd),

where j(i) corresponds to the index identified for ith coordinate g̃R,U,t(i).
Note that there is no overflow because of the choice of hs and the quantized output Q(g̃R,U,t)

can be represented using precision of at most µd · (log(ks) + log(hs)) bits. We denote this binary
representation by [Q(g̃R,U,t)]2.

12The ith tetra-iteration of e∗i is defined as: e∗1 = e, e∗i := ee
∗(i−1)

.
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Mapping to ASK code. Using the ASK code in (13), when r = µd · log(hsks), there exists
a one-to-one mapping between [Q(ĝR,U,t)]2 and ASK code, say ζs : {0, 1}r → [−

√
P ,
√
P ]. We

therefore send the codeword ϕs(ĝt,shape) = ζ([Q(g̃R,U,t)]2) in one channel-use as

Ys,t = ϕs(ĝt,shape) + Zs,t, (15)

where Zs,t ∼ N (0, σ2) denotes the Gaussian noise. Note that the power constraint is always
satisfied.

At the algorithm’s end, the decoder ψs primarily makes use of three components, namely the
minimum-distance decoder, inverse mapping ζ−1

s , and inverse rotation, and performs the following
steps:

1. The channel output Ys,t is fed into a minimum-distance decoder that locates the nearest pos-
sible ASK codeword in [−

√
P ,
√
P ] which further is fed into ζ−1

s retrieving an r-bit sequence.

2. The recovered r-bit sequence is split into blocks of size µd · log(ks) and µd · log(hs), each of
which gets further split into sub-blocks of sizes log(ks) and log(hs), respectively. These sub-
blocks can uniquely identify the quantization intervals and the corresponding quantization
levels for all sampled coordinates in U . We denote that by Q̂(g̃R,U,t) ∈ Rd. Note that all the
remaining unsampled coordinates are decoded to be 0, i.e.,

Q̂(g̃R,U,t)(i) = 0, ∀i /∈ U.

3. The last step is to multiply Q̂(g̃R,U,t) by 1
µ and perform inverse rotation to get the decoded

output ψs(Ys,t) = 1
µR
−1Q̂(g̃R,U,t).

Under perfect minimum-distance decoding, we have Q̂(g̃R,U,t) = Q(g̃R,U,t). Again, similar to
(11), (12) we have,

α(π, ϕs, ψs) := sup
ĝt∈Rd:‖ĝt‖2≤1

√
E [‖ψs(Ys,t)‖2],

β(π, ϕs, ψs) := sup
ĝt∈Rd:‖ĝt‖2≤1

‖E [‖ĝt‖ − ψs(Ys,t)] ‖,

where Ys,t is defined in (15). Since the shape vector is almost-surely bounded by 1, note that this
time, the performance measures are defined over the class of almost-surely bounded oracles.

Following the proof of [28, Theorem 3.7], we can derive lemma below.

Lemma 4.3. For ϕs, ψs as defined above and under perfect minimum-distance decoding event, we
have

α(π, ϕs, ψs) ≤

√
1

µ

(
9

(ks − 1)2
+ 1

)
and β(π, ϕs, ψs) = 0.

3. Combining the gain and the shape quantizers. The final decoded output is taken to be
product of outputs from gain decoder ψg and shape decoder ψs, i.e.,

ψ(Yg,t, Ys,t) = ψg(Yg,t) · ψs(Ys,t).

The lemma below is again adapted from [28, Theorem 4.2] and can be proved in a similar way.
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Lemma 4.4. For the decoded output ψ(Yg,t, Ys,t) defined above, we have

α(π, ϕ, ψ) ≤ α(π, ϕg, ψg) · α(π, ϕs, ψs) and
β(π, ϕ, ψ) ≤ β(π, ϕg, ψg).

4. Analysis. Since communicating gain and shape for each query requires 2 channel-uses, we can
have atmost N/2 queries. For the minimum-distance decoder, denote by AN the event where all
the ASK constellation points sent in N channel-uses are decoded correctly by the algorithm and
by AcN its complement, i.e., AcN := ∪Nt=1{|Zs,t| ≥ 2

√
P/(2r − 1)}, where Zs,t is defined in (15). We

have

E [f(xN )− f(x∗)] = E [(f(xN )− f(x∗)) | AN ] · P (AN ) + E [(f(xT )− f(x∗)) | AcN ] · P (AcN )

≤ E [(f(xN )− f(x∗)) | AN ] +DB · P (AcN ) . (16)

As P (AcN ) ≤ N exp
(
− 2SNR

(2r−1)2

)
, setting r = log

(√
4SNR
lnN + 1

)
gives P (AcN ) ≤ 1√

N
. Using Lemma

4.2, the first term on the right-side can be bounded as

E [(f(xN )− f(x∗)) | AN ] ≤ D

(
α(π, ϕ, ψ)√

N/2
+ β(π, ϕ, ψ)

)
.

We now analyse the overall performance measures α(π, ϕ, ψ) and β(π, ϕ, ψ) of gain-shape quan-
tizer described above.

Recall that the gain value is sent in one channel-use after appropriate scaling. The shape is
quantized using RATQ and sent over the channel using the ASK code given by (13) with r =
µd log(hsks).

Using the individual performance measures from (14) and Lemma 4.3, and combining them via
Lemma 4.4, we have

D

(
α(π, ϕ, ψ)√

N/2
+ β(π, ϕ, ψ)

)
≤ D

B
√

1 + 1
SNR
·
√

1
µ

(
9

(ks−1)2 + 1
)

√
N/2


= DB

√
d

N

√
2

µd

(
1 +

1

SNR

)(
9

(ks − 1)2
+ 1

)

= DB

√
d

Nr

√
2 log(hsks)

(
1 +

1

SNR

)(
9

(ks − 1)2
+ 1

)
,

where the last line uses the fact that µd = dr/ log(hsks)e. Using the inequality above, (16) can be
further bounded as

E [f(xN )− f(x∗)] ≤ DB
√
d√

N

√√√√2 log(hsks)
(
1 + 1

SNR

) (
9

(ks−1)2 + 1
)

log(1 +
√

4SNR/ lnN)
+
DB√
N
.

18



At last, we use an 8-level shape quantizer for every coordinate, i.e., ks = 8, and choose the number
of quantization intervals hs satisfying log hs = d[log(1 + ln∗(d/3))e. For ln∗(d/3) ≤ 7, we have
µd = dr/6e, which further implies that r ≥ 6, and that

E [f(xN )− f(x∗)] ≤ DB√
N

√
d · 24

(
1 + 1

SNR

)
log(1 +

√
4SNR/ lnN)

+
DB√
N

≤ 2DB√
N
·

√√√√√ d

min{d, log(1+
√

4SNR/ lnN)

24(1+ 1
SNR )

}

≤ 2DB√
N
·

√√√√ d

min{d, log(1+
√

4SNR/ lnN)

48 }
,

where the last line uses the inequality that 1 + 1
SNR
≤ 2 for SNR > 1, which further holds since

r ≥ 6.

5 Experiments
We evaluate the performance of our proposed analog and digital schemes (c.f. Sections 4.5, 4.7)
which achieve the optimality of over-the-air optimization at low and high SNRs, respectively. Our
experiments validate all our claims and are described below.

We consider the task of image classification and perform experiments on MNIST dataset, which
has 60000 training and 10000 test samples. In particular, the classifier for the MNIST dataset is
implemented by training a 3-layer Convolutional Neural Network (CNN) that consists of a single
convolution layer with 16 filters of dimension 3 × 3 each and ReLU activation function, followed
by a 2 × 2 max-pooling; one fully connected layer with dimensions 2704 × 10; and a final softmax
output layer, i.e., d = 27210. We choose the optimization algorithm to be SGD with learning rates
proportional to SNRs (as can be inferred from Lemma 4.2).

For our experiments, we consider the proposed digital scheme using ASK described in Section
4.7. Recall that the gain is always sent in one channel-use after scaling, and the shape is quantized
using RATQ and then sent over the Gaussian channel using the ASK code. For RATQ, we set
hs = 4, ks = 8 in tetra-iterated adaptive shape quantizer. Further, the descriptions of quantization
interval (log hs bits per dimension) and the corresponding uniform quantization point (log ks bits
per dimension) are sent separately13 in two different channel uses, and the best values for r in ASK
code are chosen proportional to operating SNR.

On the other hand, for the proposed analog scheme, we consider the sampled version of scaled
transmission scheme described in Section 4.5.2 with sampling only three coordinates, i.e., ` = 3.
This choice of ` is considered for a fair performance comparison with the digital scheme in terms
of the number of channel uses. Our codes are available online [46] on GitHub.

We investigate the performance of the proposed analog and digital over-the-air schemes at
various SNRs; specifically, −30dB, 40dB, 100dB and 180dB. We plot the training loss and test

13Note that our proposed digital scheme (see Section 4.7 for details) uses one channel transmission for sending the
shape gradient quantization. Still, in the experiments, we send it using two channel transmissions. We do this to
mitigate the precision issues we run into for ASK coding at high values of r in Python.
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accuracy for the image classification task at these SNRs in Figures 1, 2, 3 and 4, respectively.
The choice for these SNRs are for illustrating the validity of theoretical claims, not for practical
considerations.

The performance of both the analog and the digital scheme improves as SNR increases. However,
the improvement is faster for the digital scheme than for the analog scheme. In more detail, Figure 1
shows that the proposed analog scheme performs much better than the proposed digital scheme
at very low SNR of −30dB. As we increase the SNR, the performance gap between the digital and
analog schemes gets reduced. This can be observed in Figure 2 where the performance of both the
schemes at SNR = 40dB is similar. With further increase in SNR values, the proposed digital scheme
surpasses the performance of the proposed analog scheme, with the gap between their performance
widening with an increase in SNR, as can be seen in Figure 3 and Figure 4.

Figure 4 also shows the performance of the classic baseline scheme, where perfect stochastic
gradient estimates are available for the optimization protocol. In other words, the gradients are
passed through a Gaussian channel of zero variance. As observed in Figure 4, the proposed digital
scheme is close to the baseline14 performance.

Thus our experiments validate our theory. In particular, Figure 1 validates our theoretical
claim that analog schemes are optimal at low SNR. On the other hand, Figures 2, 3, 4 validates our
theoretical claim that analog schemes go further away from optimality with an increase in SNR and
digital schemes need to be used for optimal convergence at high SNR.
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Figure 1: Comparison between proposed analog and proposed digital scheme at SNR = −30dB.

6 Concluding remarks
We showed the optimality of analog schemes at low SNR in Corollary 3.3. However, Theorem 3.4
shows that there is a

√
d factor bottleneck that analog codes can’t overcome, no matter how high

14In an ideal scenario, we expect the digital scheme to attain the baseline performance for a larger SNR value, as
we increase the value of r accordingly. Unfortunately, our python code runs into precision issues for optimally tuned
ASK schemes at higher SNRs (beyond 180 dB).
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Figure 2: Comparison between proposed analog and proposed digital scheme at SNR = 40dB.
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Figure 3: Comparison between proposed analog and proposed digital scheme at SNR = 100dB.

the SNR is. Finally, we show in Theorem 3.7 that the proposed digital scheme using ASK codes
almost attain the optimal convergence rate at all SNRs.

It is important to note that more sophisticated coding schemes can still help in improving the
small log logN and ln∗ d factors seen in the performance of ASK codes.

In another direction, it is important to consider multiparty algorithms and multiterminal com-
munication over Gaussian additive MAC channel. While the limitations for analog schemes apply
to that setting as well, we may need to use lattice codes to extend our ASK coding scheme to a
MAC. This is an interesting direction for future work.
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A Mathematical details concerning Remark 2
Recall that in the top-k gradient coding scheme only the absolute largest k values of the gradients
are used to update the query point. We begin by defining a strict generalization of top-k gradient
coding schemes which we call k-coordinate sampling codes.

Definition A.1. A code is a k-coordinate sampling code if the encoder mapping ϕ consist of only
k-coordinate values and their indices, i.e., when ϕ(x) = (S, {x(i)}i∈S), where S is a subset of [d]
with cardinality k. Further, we allow for the set S to be dependent on x. Also, we denote by
E∗kcs(N) the min-max optimization error when the class of (d, `, P )-encoding protocol is restricted
to analog schemes (with everything else remaining the same as in (5)). Clearly, E∗kcs(N) ≥ E∗(N).

Lemma A.2. For all values of SNR, we have

E∗kcs(N) ≥ cDB√
N
·
√

d

min{d, k log d
k}

Proof. For bounding E∗kcs(N), our function class remains the same as in (6) and the oracle remain
the same as in the proof of Theorem 3.1. Now note that since gradient estimates supplied by
the oracle are Bernoulli vectors, the encoder ϕ(·) can thought of as quantizer with precision of
log
(
d
k

)
+ k bits, where the first term in the addition is used to represent S and the second to

represent k. Therefore, even at infinite SNR, we have∑
i∈[d]

I
(
V (i) ∧ Y T

)
≤ c′δ2N min{d, log

(
d

k

)
+ k},

where the result directly follows from [37, Theorem 5] Then, by noting that log
(
d
k

)
+ k ≤ k log d

k +
k(1 + log e) and proceeding as in proof of Theorem 3.1, the proof is complete.

Thus, if we employ top-k gradient coding schemes, even at very high SNR values we do not attain
the classic convergence rate.

25

http://arxiv.org/abs/2007.10976
http://www2.isye.gatech.edu/ne-mirovs/Lec_EMCO.pdf
https://github.com/shubhamjha-46/OTA_Optimization

	Introduction
	Problem formulation and preliminaries
	Functions and gradient oracles
	Codes and Gaussian channel
	Over-the-air Optimization
	Special coding schemes
	A benchmark from prior results

	Main Results
	Lower Bound for over-the-air optimization
	Performance and limitations of analog schemes
	Optimality of ASK

	Proofs
	 Summary of the method used for proving lower bounds
	Proof of Theorem 3.1
	Proof of Theorem 3.4
	A general convergence bound for over-the-air optimization
	Proof of Theorem 3.2
	The scaled transmission analog scheme
	The sampled version of scaled transmission analog scheme

	Proof of Theorem 3.6
	Proof of Theorem 3.7

	Experiments
	Concluding remarks
	Mathematical details concerning Remark 2

