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Abstract—We consider the estimation of a standard Gaussian
random variable under an observation attack where an adversary
may add a zero mean Gaussian noise with variance in a
bounded, closed interval to an otherwise noiseless observation. A
straightforward approach would entail either ignoring the attack
and simply using an optimal estimator under normal operation
or taking the worst-case attack into account and using a minimax
estimator that minimizes the cost under the worst-case attack. In
contrast, we seek to characterize the optimal tradeoff between the
MSE under normal operation and the MSE under the worst-case
attack. Equivalently, we seek a minimax estimator for any fixed
prior probability of attack. Our main result shows that a unique
minimax estimator exists for every fixed probability of attack and
is given by the Bayesian estimator for a least-favorable prior on
the set of possible variances. Furthermore, the least-favorable
prior is unique and has a finite support. While the minimax
estimator is linear when the probability of attack is 0 or 1, our
numerical results show that the minimax linear estimator is far
from optimal for all other probabilities of attack and a simple
nonlinear estimator does much better.

I. INTRODUCTION

Distributed control in the presence of an attacker who
can manipulate various components of a control system has
received a lot of attention in recent years. As a starting
point to address this broad class of problems, we consider
the estimation of a signal in the presence of observation
attacks where an adversary can modify the distribution of the
observed signal. A simple approach entails using a minimax
estimator that minimizes the worst-case cost under all possible
attacks. Such estimators can be constructed using, for instance,
the robust estimation techniques in [16], [7]. Such robust
estimator, while unavoidable when the system is under attack,
might be too pessimistic when the attack is not certain.
To remedy this shortcoming, we consider the problem of
minimizing the opertational cost Jo over all estimators that
keep the cost under attack Ja bounded below an acceptable
value Jmax. Under this formulation, the case when there is a
certainty about the presence or the absence of an attack can
be handled, respectively, by choosing Jmax to be sufficiently
small or sufficiently large.

An equivalent formulation is to minimize the Lagrangian
Jo + λJa for a given value of λ, which is further equivalent
to a Bayesian formulation where one seeks to minimize
(1 − pa)Jo + paJa for a given prior probability of attack
pa = λ/(1 + λ). In this paper, for a specific Gaussian
estimation problem, we present a structural result for the
minimax estimator for any given pa. Our numerical results
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illustrate that there is a marked change in the structure of the
minimax estimator as we move from pa ∈ {0, 1} to the case
of attack uncertainty with pa ∈ (0, 1).

Specifically, we consider the model where a standard Gaus-
sian signal X is observed under normal operation of the
system. However, an attacker may add to X an independent,
zero-mean Gaussian noise N of variance in [σ2

min, σ
2
max]. For

a given prior probability of attack pa, we seek a minimax
estimator for the mean squared error (MSE) cost where the
normal operation cost Jo(e) is given by E

[
(X − e(X))2

]
and the cost under attack Ja(e) is given by the supremum
over θ ∈ [σ2

min, σ
2
max] of E

[
(X − e(X +Nθ))

2
]

for Nθ ∼
N (0, θ). We show that a unique minimax estimator exists for
every fixed pa and is given by the Bayesian estimator for a
least-favorable prior. Furthermore, the least-favorable prior is
unique and has a finite support1. For the case when pa = 0
or 1, this unique minimax estimator is linear. However, our
numerical results show that the minimax estimator for the
restricted problem where the adversary can attack only with
θ = σ2

min or θ = σ2
max outperforms the minimax linear

estimator for all pa ∈ (0, 1).
The problem studied here is closely related to that of

parameter estimation when the parameter space is restricted
to a compact set (cf. [3], [2], [15]). Indeed, one approach for
our problem can be to first detect if an attack is present, and
if it is present, estimate the noise parameter θ̂ and use the
optimal estimator of X for θ̂. An analysis of this estimator
that separates detection and estimation is work in progress.

The rest of the paper is organized as follows. In the next
section, we present a general saddle-point theorem that will be
used to show the optimality of Bayesian estimators. Our main
results on the structure of the minimax estimator for Gaussian
signal under observation attack are given in Section III.
The final section contains numerical results comparing the
minimax linear estimator and the minimax estimator for the
restricted problem where the adversary can only choose noise
variance to be σ2

min or σ2
max.

II. SADDLE POINT THEOREMS

In this section, we prove a general saddle point theorem
and apply it to the specific case of estimation under the MSE
criterion to show the existence of a robust minimum mean
squared error (MMSE) estimator.

While a general result claiming the optimality of Bayesian
policies for the minimax risk problem was shown in [8], it is

1Analogous results for the case when the adversary controls the mean of
the noise are omitted due to lack of space.



not directly applicable to the specific case of robust MMSE
estimation for two reasons: First, the quadratic loss function
is unbounded, and second, it is unclear how to cast the robust
MMSE problem as a minimax risk problem that satisfies the
assumptions in [8]. Another plausible approach entails using
the saddle point theorem in [17, Theorem 2.1]. However,
the “regular point condition” required in that result does not
hold for our problem. Various other saddle point theorems for
estimation problems with restricted parameter spaces (cf. [10])
are not applicable either. In contrast, our saddle point theorem
below is tailored to the cases where additional structure is
available for the set of Bayesian policies2.

A. General result

Let Ω be a compact metric space. Consider the minimax
problem

L(F ,Ω) = inf
f∈F

sup
ω∈Ω

`(f, ω),

where ` : F×Ω→ [0,∞) is the cost function to be minimized.
Further, let P(Ω) denote the set of all probability measures
on Ω, and let L(f, π) denote the average cost

L(f, π) = Eπ [`(f,W )] ,

where the expectation is taken over the random variable W
with distribution π ∈ P(Ω). Then, the minimax problem
L(F ,Ω) can be reexpressed as its convexified version

L(F ,P) = inf
f∈F

sup
π∈P(Ω)

L(f, π) = L(F ,Ω).

Recall the following definition.

Definition 1. A policy f∗ ∈ F and a prior π∗ ∈ P(Ω)
constitute a saddle point of L(F ,P) if for all f, π

L(f∗, π) ≤ L(f∗, π∗) ≤ L(f, π∗),

namely f∗ is an optimal policy for the prior π∗ and π∗ is a
worst prior when the policy is fixed to be f∗.

For a saddle point (f∗, π∗), we have

L(F ,P) = min
f∈F

max
π∈P(Ω)

L(f, π)

= max
π∈P(Ω)

min
f∈F

L(f, π)

= L(f∗, π∗).

Therefore, π∗ is a least favorable prior for L(F ,Ω), and f∗

is a minimax policy for it.
We show that a saddle point exists for L(F ,P) under the

following assumption:
There exists a reflexive Banach space R and its bounded,

closed, and convex subset F0 ⊂ F ∩R such that
(A1) `(f, ω) is continuous ω for each fixed policy f ∈ F0;
(A2) `(f, ω) is continuous and convex in f ∈ F0 with respect

to R, uniformly in ω ∈ Ω;

2For instance, under mild conditions, Bayesian policies for the MMSE
problem lie in a Hilbert space.

(A3) for each π ∈ P(Ω) there is a policy fπ ∈ F0 that is
optimal for π, i.e., for each π there is a fπ satisfying

fπ ∈
{

arg min
f∈F

L(f, π)
}
∩ F0.

Theorem 1. If the assumptions (A1)-(A3) hold, then there
exists a saddle point (f∗, π∗) for L(F ,P).

The proof is omitted due to lack of space.
Note that we do not require the class F to satisfy any

structure. We only make assumptions about the structure of
F0, a set containing optimal policies for all priors.

B. Robust Minimum Mean Squared Error Estimation

Let X , Y , and Nθ, θ ∈ Θ, be Rn-valued random variables,
and let Θ be a compact metric space. Consider the problem of
estimating a random variable X by observing its noisy version

Y = X +Nθ,

where the noise Nθ is independent of X and has a distribution
Pθ, θ ∈ Θ. For brevity, we denote the expectation with respect
to the measure Pθ on noise Nθ by Eθ [·], and with a slight
abuse of notation, the expectation with respect to a random
θ drawn according to a prior π by Eπ [·]. For an estimator
e : Rn → Rn and a parameter θ ∈ Θ, the cost function is
given by

`(e, θ) = Eθ
[
‖X − e(Y )‖22

]
.

We are interested in finding an optimal estimator e∗(Y ) that
minimizes the worst-case cost supθ∈Θ `(e, θ) over the class E
of estimators e satisfying

sup
θ∈Θ

Eθ
[
‖e(Y )‖22

]
<∞.

Recall that, for each prior π on Θ, the unique estimator e∗π ∈ E
which minimizes the cost

L(e, π) = Eπ [`(e, T )]

is given by
e∗π(y) = Eπ [X | Y = y] .

We make the following assumptions:
(B1) The total variation distance dTV (Pθ, Pθ′) goes to zero

in the limit θ → θ′;
(B2) there exists a θ0 ∈ Θ and a constant C0 such that for

all Borel measurable sets A

Pθ(A) ≤ C0 Pθ0(A);

(B3) the optimal estimators e∗π(y) = Eπ [X | Y = y] satisfy

sup
π∈P(Θ)

sup
θ∈Θ

Eθ
[
‖e∗π(Y )‖22

]
<∞.

We have the following corollary of Theorem 1. The proof is
omitted due to lack of space.

Theorem 2. If (B1)-(B3) hold, then there exists a saddle
point (e∗, π∗) for the robust MMSE problem L

(
E ,P(Θ)

)
.

Furthermore, the saddle point estimator e∗ is unique.



While the minimax estimator is shown to be unique in the
proof above, the least favorable prior may not be unique.
Specifically, it is possible that two least favorable priors π∗1
and π∗2 both lead to the same minimax estimator e∗. In the
next section, we will rule out this possibility for the specific
case of Gaussian noise.

III. GAUSSIAN ESTIMATION UNDER ATTACK UNCERTAINTY

We now move to the main subject of this paper, namely
the estimation of scalar Gaussian signals in Gaussian noise
under the MSE criterion when the noise parameters may be
controlled by an adversary. We begin with a formal description
of the setup, followed by a saddle point theorem which shows
that there is a unique least favorable prior which leads to
the minimax estimator. Finally, we show that the unique least
favorable prior has a discrete support.

We restrict to an attack only on the variance of the noise.
Analogous results for attack on the mean of the noise hold.
Furthermore, the uniqueness of least favorable prior shown
below holds in general for Rn-valued observations and also
under joint mean and variance uncertainty. We omit these
general results due to the lack of space and illustrate all our
observations in the context of an adversary who controls the
variance of the noise.

A. Formulation and the minimax estimator

Consider the robust MMSE formulation of Section II-B with
n = 1 for the case when X is a standard Gaussian random
variable and the parametric family Pθ is given by

Nθ =

{
0, with prob. 1− pa
N (0, θ), with prob. pa,

where N (0, θ) denotes the zero mean Gaussian distribution
with variance θ taking values in the compact set Θ =
[σ2

max, σ
2
min]. Therefore, the goal is to obtain an estimator e∗

that minimizes the worst-case cost

sup
Θ

Eθ
[
‖X − e(Y )‖22

]
= (1− pa)E

[
‖X − e(X)‖22

]
+ pa sup

θ∈Θ
E
[
‖X − e(Yθ)‖22

]
, (1)

where pa is the given probability of attack and Yθ denotes
the random variable X + Nθ. As discussed in Section I, the
formulation here corresponds to minimizing the Lagrangian
of the constrained optimization problem where one seeks to
minimize the MSE cost under normal operation while ensuring
a reasonable performance under attack.

When pa = 0, the (trivial) linear estimator e(y) = y is
optimal. Interestingly, even for pa = 1, the minimax estimator
is linear3 and corresponds to the optimal estimator for noise
variance σ2

max. However, a linear estimator is far from optimal
for any other choice of pa; see numerical results in the next
section.

3The simple proof follows upon noting that σ2
max is the worst variance for

the optimal estimator for θ = σ2
max.

As in the previous section, we consider the Bayesian relax-
ation of the problem and argue by Theorem 2 that there is
a unique minimax estimator for this problem, leading to the
following corollary.

Corollary 3. There exists a saddle point (e∗, π∗) for the cost
(1) for estimating Gaussian signals under attack uncertainty.
Furthermore, the minimax estimator e∗ is unique.

Proof: It suffices to verify conditions (B1)-(B3). For (B1),
note that the Kullback-Leibler divergence between Pθ1 and Pθ2
is given by

D(Pθ1‖Pθ2) = (1− pa) log
(1− pa) + c(θ1)pa
(1− pa) + c(θ2)pa

+ pa log
c(θ1)

c(θ2)
+ paθ

2
1

(
θ1 − θ2

2θ1θ2

)
,

where c(θ) = (2πθ)−1/2. Then, (B1) follows from Pinsker’s
inequality (cf. [4]). Also, (B2) holds with θ0 = σ2

max and
C0 = σmax/σmin. For (B3), note that for any prior π the
optimal estimator is given by

e∗π(y) = Eπ [X|Y = y] = Eπ [E [X|θ = S, Y = y] |Y = y]

= yEπ
[

1

1 + S
|Y = y

]
,

where the random parameter S takes the value 0 with proba-
bility (1− pa), takes values in Θ according to the distribution
paπ, and Y = X +NS . Consequently,

Eθ
[
e∗π(Yθ)

2
]
≤ θ ≤ σ2

max,

which gives (B3).

B. Uniqueness of the least favorable prior
While we established the uniqueness of the minimax esti-

mator in Corollary 3, there might be multiple priors that lead
to it. The next result says that, in fact, there is a unique least
favorable prior.

Lemma 4. There is a unique least favorable prior for (1) and
consequently, also a unique saddle point.

Proof: In view of Corollary 3, it suffices to show that
if e∗π1

= e∗π2
, then the priors π1 and π2 must be the same.

We use a method that was introduced in [5] for a different
purpose. Specifically, on reparametrizing by α = (1 + θ)−1

which takes the value 1 with probability 1 − pa and values
on the interval [(1 + σ2

max)−1, (1 + σ2
min)−1] according to the

distribution paπ, we get

e∗π1
=

∫
α

3
2 e−αy

2/2π(dα)∫
α

1
2 e−αy2/2π(dα)

.

On changing the distribution of α to π′ given by (dπ′/dπ) =√
α and denoting z = −y2, we get

e∗π1
(y) =

∫
αezαπ′(dα)∫
ezαπ′(dα)

=
d

dz
log

(∫
ezαπ′(dα)

)
=

d

dz
log φπ′(z),



where φπ′(z) is the moment generating function of π′ at z.
Since φπ′(0) = 1, e∗π1

= e∗π2
implies that φπ′1(z) = φπ′2(z)

for all z ≤ 0, and since α is supported on a compact set,
the analytic extension of φπ′1 equals that of φπ′2 . In particular,
π′1 and π′2 have the same characteristic functions. Therefore,
π′1 = π′2 (cf. [6]) and so, π1 = π2.

C. The least favorable prior has a finite support

We close this section with a structural result about the least
favorable prior, namely that it is discrete and is supported
on finitely many points. Similar structure has been observed
in several parameter estimation problems when the parameter
set is restricted to a compact set; see [15, Section 4.2] for a
literature review. Our proof is based on the analytic extension
of the cost function which was introduced by Smith in [14] to
show that the capacity achieving distribution in an amplitude
constrained Gaussian channel has a finite support. Specifically,
we rely on the well-known result in parametric estimation (cf.
[1, Chapter 5, Theorem 19]) which states that if the parameter
set is compact and the Bayesian risk for a least favorable prior
is analytic in the parameter, then either the least-favorable prior
has a finite support or the corresponding Bayesian estimator
has constant risk for all values of the parameter.

Definition 2. Let π be a (Borel) probability measure on a
compact metric space Θ. The support of π is the set of all
points x ∈ Θ such that π(O) > 0 for all open sets O
containing x.

In preparation for our main result, we make the following
observation about the support of a least favorable prior π∗.

Lemma 5. Given σmin > 0, for every M > 0 there exists
σ2

max ≥ σ2
min such that the support of a least favorable prior

for the parameter set [σ2
min, σ

2
max] contains a point θ > M .

Proof: Assume the contrary. Then, there exists M > 0
such that the support of least favorable priors for all intervals
[σ2

min, σ
2
max] is contained in [0,M ]. Note that for any prior π

with support contained in [0,M ]

y2

(1 +M)2
≤ e∗π(y)2 ≤ y2.

It follows that

L(e∗π∗ , θ) = Eθ
[
X − e∗π∗(Y )2

]
= 1 + Eθ

[
e∗π∗(Y )2

]
− 2Eθ [Xe∗π∗(Y )]

≥ 1 + Eθ
[
e∗π∗(Y )2

]
− 2
√

Eθ [e∗π∗(Y )2]

≥ 1 +
1 + θ

(1 +M)2
− 2
√

1 + θ,

where the first inequality is by Cauchy-Schwartz inequality.
Therefore, in the limit as σmax goes to infinity, the worst-case
cost supθ∈Θ L(e∗π∗ , θ) also goes to infinity. However, in view
of Corollary 3 and Lemma 4, for the least favorable prior π∗,
the estimator e∗π∗ is the unique minimax estimator. But the
estimator e(y) = 0 attains the cost k+ 1 and outperforms e∗π∗
for sufficiently large σmax, which is a contradiction.

Our main result on the structure of the least favorable prior
is the following.

Theorem 6. For every compact parameter set Θ, the least
favorable prior has a finite support.

Proof: Note that the function L(e∗π∗ , θ) is analytic in
θ in the right-half complex plane away from zero (cf. [9,
Theorem 2.7.1]). Therefore, by [1, Chapter 5, Theorem 19]
(see also [14]) either the support S of the least favorable prior
contains finitely many points or L(e∗π∗ , θ) must equal L(E ,Θ)
in the entire right-half complex plane away from zero. But
if the latter holds then e∗π∗ will be a minimax estimator for
every parameter set Θ′ that contains Θ and π∗ will be the
least favorable prior for every Θ′ containing π∗. However,
this contradicts Lemma 5. Thus, the set S must contain only
finitely many points.

IV. NUMERICAL RESULTS

In this final section, we continue with the setup of the
previous section and present numerical results to illustrate
the utility of estimators designed with the possibility of an
observation attack in mind. Note that for pa = 0 the optimal
estimator e(y) = y is linear. Also, since a minimax linear
estimator exists for the robust MMSE problem with uncertain
noise [16], even for pa = 1 the minimax estimator is linear.
However, when there is some uncertainty about the attack,
i.e., pa /∈ {0, 1}, a linear estimator is no longer minimax.
To illustrate this, we compare the performance of a minimax
linear estimator with the minimax estimator for the restricted
problem when the adversary can attack only with one of the
two extreme variances σ2

min or σ2
max. We begin by describing

the minimax estimators for the two cases.

A. Minimax linear estimator el
Let El be the class of all linear estimators e(y) = ay.

Consider the minimax problem L(El, [σ2
min, σ

2
max]) for the

cost function (1). For a given θ ∈ [σ2
min, σ

2
max], the optimal

linear estimator eθ(y) is given by eθ(y) = (1 + paθ)
−1y.

Furthermore, the MSE cost for a parameter is linear in θ.
Therefore, the minimax linear estimator el is given by eθ∗(y)
for θ∗ = σ2

max.

B. Minimax estimator er for the restricted problem

Consider a restricted problem where the choice of
noise variances for the adversary are restricted to Θr =
{σ2

min, σ
2
max}. For the minimax problem L(E ,P(Θr)), a min-

imax estimator er exists and can be determined explicitly.
Specifically, the following holds (cf. [11]).

Lemma 7. Given a probability of attack pa, let ep(y) be the
optimal estimator for the Bayesian case when the adversary
chooses σ2

min with probability p and σ2
max with probability

1− p. Then, one of the following must hold:
1) eσ2

min
is minimax for the restricted problem;

2) eσ2
max

is minimax for the restricted problem;
3) there exists a p∗ such that L(ep∗ , σ

2
min) = L(ep∗ , σ

2
max),

and therefore, ep∗ is minimax for the restricted problem.



Note that L(E ,Θr) constitutes a lower bound for the orig-
inal minimax problem L(E , [σ2

min, σ
2
max]). Furthermore, the

performance of the minimax estimator er over [σ2
min, σ

2
max]

yields an upper bound for cost in the original minimax
problem.

C. Comparison of performances of el and er
In Figure 1, we compare the performance of the minimax

restricted estimator er and the minimax linear estimator el
for the original problem L(E , [σ2

min, σ
2
max]). We plot the cost

pair (Jo, Ja) for er and el for different values of pa. As a
lower bound, we plot the optimal cost region for the restricted
problem. It can be seen that the linear estimator is far from
optimal when there is an attack uncertainty. As an attempt to
explain this disparity, we compare the estimators er and el in
Figure 2. Heuristically, the nonlinear estimator er outperforms
the minimax linear estimator due to its ability to “detect” an
attack. In particular, note that for small pa the estimator er
detects normal operation for small y and mimics e(y) = y.
On the other hand, for large pa, it detects an attack if y is
large and mimics el(y).
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Fig. 1: Cost tradeoff curve for σ2
min = 5 and σ2

max = 50 com-
paring the minimax linear estimator and the minimax estimator
for the restricted problem with only two possible attacks. The
lower bound corresponds to the optimal performance for the
restricted problem.

Another interesting observation from Figure 1 is that the
estimator er is close to optimal. In fact, we observed no
difference between the lower bound and the actual perfor-
mance of er for the case when σ2

min and σ2
max are close

to each other. It can also be observed (numerically) that
the function `(er, θ) is monotone when σmin and σmax are
close to each other, suggesting the minimaxity of er. This
observation is along the lines of [3] where a similar result was
proved for the problem of estimating Gaussian mean. Proving
this numerical observation rigorously and a comparison of
the minimax estimator with a simple “detect and estimate”
approach is work in progress.
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