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Abstract—We study a problem of secure computation by
multiple parties of a given function of their cumulative obser-
vations, using public communication but without revealing the
value of the function to an eavesdropper with access to this
communication. A Shannon theoretic formulation is introduced
to characterize necessary and sufficient conditions for secure
computability. Drawing on innate connections of this formulation
to the problem of secret key generation by the same parties
using public communication, we show that a function is securely
computable if and only if its entropy is smaller than the secret key
capacity. Conditions for secure computability at a lone terminal
are also derived by association with an appropriate secret key
generation problem.

I. INTRODUCTION

Suppose that terminals 1, . . . , m observe correlated signals
and are required to compute “securely” a given function g
of all the signals. To this end, following their observations,
all the terminals are allowed to communicate interactively
over a public noiseless channel of unlimited capacity, with all
such communication being observed by all the terminals. The
terminals seek to compute g in such a manner as to keep its
value information theoretically secret from an eavesdropper
that observes the public interterminal communication. See
Fig. 1. A typical application arises in a wireless network
of colocated sensors which must compute a given function
of their correlated measurements using public communication
that does not give away the value of the function.
Our goal is to characterize the necessary and sufficient

conditions under which such secure computation is feasible.
We formulate a new Shannon theoretic multiterminal source
model that addresses the question: When can a function g
be computed so that its value is independent of the public
communication used in its computation? The answer to this
question is innately connected to the problem of secret key
(SK) generation in which the same terminals seek to generate
“secret common randomness” at the largest rate possible, by
means of public communication from which an eavesdropper
can glean only a negligible amount of information [12], [1],
[6], [7]. The largest rate of such a SK, which can be used
for encrypted communication, is the SK capacity CS . Since a
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Fig. 1. Secure computation of g

securely computable function g will yield a SK of rate equal
to its entropy H , it is clear that g necessarily must satisfy
H ≤ CS . Surprisingly, H < CS is a sufficient condition for
the existence of a protocol for the secure computation of g,
constituting our main contribution.
Unlike in an SK generation model where the key must be

shared by at least two terminals, the problem of the secure
computation of g by a single terminal with the cooperation of
the others, is also of interest. Our second contribution relates
secure computability in this circumstance to an appropriately
identified SK generation model.
We do not tackle the difficult problem of determining the

minimum rate of public communication needed for the secure
computation of g, which remains open even in the absence of a
secrecy constraint [10]. Nor do we construct efficient protocols
for this purpose. Instead, our objective in this work is merely
to find conditions for the existence of such protocols.
The study of problems of function computation, with and

without secrecy requirements, has a long and varied history to
which we can make only a skimpy allusion here. Examples
include: algorithms for exact function computation by multiple
parties (cf. e.g., [18], [8], [9]); algorithms for asymptotically
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accurate (in observation length) function computation (cf. e.g.,
[16], [11]); exact function computation with secrecy (cf. e.g.,
[15]); and problems of oblivious transfer [14], [2].
A generalization of the problems considered here entails

secure computation by a given subset A of the set of all
terminals {1, ..., m}, with the remaining terminals serving as
helpers. This general problem has been solved recently [17].
In contrast to the case A = {1, ...,m}, an analogous necessary
condition H ≤ CS(A) where CS(A) is the secret key capacity
for A [6], is no longer sufficient. Instead, a new secret key
generation model is involved, with additional side information
provided to the helper terminals.
Preliminaries and the problem formulation are contained in

section II. Our main results, with outlines of proofs, are in
section III. A brief discussion follows in section IV.

II. PRELIMINARIES

Let X1, . . . , Xm, m ≥ 2, be rvs with finite alphabets
X1, . . . ,Xm, respectively. For any nonempty set A ⊆ M =
{1, . . . , m}, we denote XA = (Xi, i ∈ A). Similarly,
for real numbers R1, . . . , Rm, and A ⊆ M, we denote
RA = (Ri, i ∈ A). Further, we denote n i.i.d. repetitions
of XM = (X1, . . . , Xm) by Xn

M = (Xn
1 , . . . , Xn

m). With
XM = X1 × . . . × Xm, let g : XM → Y be a given
mapping where Y is a finite alphabet. For n ≥ 1, with
Xn

M = Xn
1 × . . . × Xn

m, the mapping gn : Xn
M → Yn is

defined by

gn(xn
M) = (g(x11, . . . , xm1), . . . , g(x1n, . . . , xmn)),
xn
M = (xn

1 , . . . , xn
m) ∈ Xn

M.

Following [6], given ε > 0, for rvs U, V, we say that U is ε-
recoverable from V if Pr {U �= f(V )} ≤ ε for some function
f(V ) of V . All logarithms and exponentials are with respect
to the base 2.
We shall consider a multiterminal source model for secure

computation with public communication; such a model was
introduced in [6] in the context of SK generation with public
transaction. Terminals 1, . . . , m observe, respectively, the se-
quences Xn

1 , . . . , Xn
m, of observation length n. Randomization

at the terminals is permitted; we assume that terminal i gener-
ates a rv Ui, i ∈ M, such that U1, . . . , Um and Xn

M mutually
independent. The terminals are allowed to communicate over
a noiseless public channel, possibly interactively in several
rounds. Formally, assuming without any loss of generality
that the communication of the terminals in M occurs in
consecutive time slots in r rounds, such communication is
described in terms of the mappings

f11, . . . , f1m, f21, . . . , f2m, . . . , fr1, . . . , frm,

with fji corresponding to a message in time slot j by terminal
i, 1 ≤ j ≤ r, 1 ≤ i ≤ m; in general, fji is allowed to
yield any function of (Ui, X

n
i ) and of previous communication

described in terms of {fkl : k < j, l ∈ M or k = j, l < i}.
The corresponding rvs representing the communication will

be depicted collectively as

F = {F11, . . . , F1m, F21, . . . , F2m, . . . , Fr1, . . . , Frm}.
Definition 1. We say that g is εn-securely computable (εn-
SC) by the terminals in M from observations of length n,
randomization UM and public communication F = F(n), if

(i) gn is εn- recoverable from (Ui, X
n
i ,F) for every i ∈ M,

i.e., there exists ĝ
(n)
i satisfying

Pr
{

ĝ
(n)
i (Ui, X

n
i ,F) �= gn(Xn

M)
}
≤ εn, i ∈ M, (1)

and

(ii) gn satisfies the“strong” secrecy condition1

I(Gn ∧ F) ≤ εn, (2)

where Gn = gn(Xn
M).

By definition, an εn-SC function g is recoverable (as gn)
at the terminals in M and is effectively concealed from an
eavesdropper with access to the public communication F.

Definition 2. We say that g is securely computable if g
is εn- SC by M from observations of length n, suitable
randomization UM and public communication F(n), such that
lim
n

εn = 0.

We seek to answer the following question: When is a given
g securely computable? The answer will be seen to be linked
inherently to the concept of SK capacity for a multiterminal
source model [6], [7].

Definition 3. [6], [7] A function K of Xn
M is an εn-secret key

(εn-SK) for the terminalsM, achievable from observations of
length n, randomization UM and public communication F if

(i) K is εn-recoverable from (Ui, X
n
i ,F) for every i ∈ M;

(ii) K satisfies the “strong” secrecy condition

log |K| − H(K | F) = log |K| − H(K) + I(K ∧ F) ≤ εn,
(3)

where K = K(n) denotes the set of possible values of
K. The SK capacity CS(XM) for M is the largest rate
lim
n

(1/n) log |K(n)| of εn-SKs for M as above, such that
lim
n

εn = 0.

Remark. The secrecy condition (3) is tantamount jointly to
a nearly uniform distribution for K (i.e., log |K| − H(K) is
small) and to the near independence ofK and F (i.e., I(K∧F)
is small).

A single-letter characterization of the SK capacity CS(XM)
is provided in [6], [7].

Theorem 1. [6], [7] The SK capacity CS(XM) equals

CS(XM) = H(XM) − RCO(XM), (4)

1The notion of strong secrecy for SK generation was introduced in [13],
and developed further in [4], [5].
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where

RCO(XM) = min
RM∈R(XM)

m∑
i=1

Ri (5)

with

R(XM) =
{

RM :
∑
i∈B

Ri ≥ H(XB | XBc), B � M
}

. (6)

Furthermore, the SK capacity can be achieved with noninter-
active communication and without recourse to randomization
at the terminals in M.

We note from [6] that RCO(XM) has the operational signif-
icance of being the smallest rate of “communication for omni-
science” forM, namely the smallest rate lim

n
(1/n) log ‖F(n)‖

of suitable communication for the terminals in M whereby
Xn

M is εn-recoverable from (Ui, X
n
i ,Fn) at each terminal

i ∈ M, with lim
n

εn = 0; here ‖F(n)‖ denotes the cardinality
of the set of values of F(n). Thus, RCO(XM) is the smallest
rate of interterminal communication that enables every ter-
minal in M to reconstruct all the sequences observed by all
the other terminals. This notion of omniscience, which played
a central role in SK generation for the multiterminal source
model [6], will play a useful role in the secure computation
of g, as well.
A comparison of the secrecy conditions in (2) and (3) that a

securely computable g and an SK K must meet, respectively,
shows that the latter is required additionally to be of near
uniform distribution. However, if g is securely computable,
then gn can be rendered also to be nearly uniformly distributed
for all n sufficiently large, for instance, by near-lossless data
compression at each terminal i ∈ M of ĝ

(n)
i (cf. Definition

1). The corresponding rvs, also of rate approximately equal to
H(G), clearly yield a SK for M. Thus, for a given g to be
securely computable, it is necessary that

H(G) ≤ CS(XM). (7)

Remarkably, it transpires thatH(G) < CS(XM) is a sufficient
condition for g to be securely computable, and constitutes our
main result below.
A special case of secure computation arises when g must

be securely computable at a sole terminal in M, say terminal
1. This means that g is as in Definitions 1, 2, but with a
requirement of recoverability only at terminal 1 replacing that
at every i ∈ M. This formulation does not relate immediately
to that of SK generation (which is meaningful only when
an SK is shared by at least two terminals). Nonetheless, by
considering a model with m = 2 terminals, we show that
conditions for g to be securely computable at only terminal
1 correspond to an appropriately identified SK generation
problem.

III. RESULTS

We begin with our main result which characterizes when a
function g is securely computable by the terminals in M.

Theorem 2. A function g is securely computable by M if

H(G) < CS(XM). (8)

Furthermore, under (8), g is securely computable with nonin-
teractive communication and without recourse to randomiza-
tion at the terminals.
Conversely, if g is securely computable byM, then H(G) ≤

CS(XM).

Outline of proof: The necessity of H(G) ≤ CS(XM) for
g to be securely computable has been outlined already in (7).
The achievability part consists of showing the existence

of noninteractive source codes which enable ominiscience at
all the terminals in M, and thereby the computation of g.
Furthermore, the corresponding codewords are selected so
as to be simultaneously independent of Gn, thus assuring
security. Formally, consider random mappings

Fi : Xn
i → {1, . . . 
exp(nRi)�}, i ∈ M, (9)

with RM = (R1, . . . , Rm) ∈ R(XM) in (6) chosen such
that

∑m
i=1 Ri

∼= RCO(XM) in (5). By [6, Proposition 1],
these mappings yield, with high probability for all n suffi-
ciently large, the existence of codes for omniscience for the
terminals in M, whereupon g can be computed by them.
Next, using condition (8) in conjunction with a variation of
the “Balanced Coloring” lemma [1, Lemma 3.1], [6, Lemma
B.2], stated in the appendix as Lemma BC, we show that
FM = (F1, . . . , Fm) is nearly independent of Gn with high
probability. Specifically, we show that with high probability

I(Fi ∧ Gn, FM\{i}) < ε, i ∈ M, (10)

which implies the smallness of

I(FM ∧ Gn) ≤
m∑
i

I(Fi ∧ Gn, FM\{i}),

guaranteeing security. We mention that the main step in (10)
is to show that

Pr
{
Xn

i | Gn, FM\{i}
}

= Pr
{
Xn

M | Gn, FM\{i}
}

with high probability, which is used then to specify the set
U0 in Lemma BC.

The sufficiency condition for secure computability of g in
(8) raises the following natural question: Does the difference
CS(XM) − H(G) possess an operational significance? The
answer is in the affirmative. Indeed, the terminals in M, over
and above securely computing g with public communication
F′ (say), can generate simultaneously a SKKg = K

(n)
g , possi-

bly with additional public communication F′′ (say), satisfying
Definition 3 with (F′, Gn,F′′) in the role of F. Denote the
largest rate limn(1/n) log |K(n)

g | of such a SK by Cg
S(XM).

Theorem 3. It holds that

Cg
S(XM) = CS(XM) − H(G).
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Remark. (i) Given a securely computable g with H(G) <
CS(XM), Theorem 3 says, in effect, that an optimum rate SK
for M can be generated with two nearly independent parts:
Gn and K

(n)
g .

(ii) Theorems 1 and 3 lead to the observation

H(XM) = RCO(XM) + H(G) + Cg
S(XM),

which admits the following heuristic interpretation. The “total
randomness” Xn

M that corresponds to omniscience decom-
poses into three “nearly mutually independent” components:
a minimum-sized communication for omniscience and the
independent parts of the optimum-rate SK just mentioned.

Outline of proof: The proof is based on the observation
that the omniscience obtained in Theorem 2 with public
communication FM that is independent of Gn, constitutes
“secure common randomness” for M which can be used
further to generate the SK K

(n)
g by applying Lemma BC.

Next, we turn to the problem of secure computability of g
at terminal 1 alone. Our partial results are for the case m = 2.
This model, in the context of computability with interactive
communication but without secrecy, has been studied in [16].

Theorem 4. Consider the model with m = 2. Then, g is
securely computable at terminal 1 if

H(X2 | X1) < H(X2 | G). (11)

Conversely, if g is securely computable at terminal 1, then

H(X2 | X1) ≤ H(X2 | G). (12)

Remark. Observe that (12) is equivalent to

H(G) ≤ I(X1 ∧ X2, G) (13)

which suggests a connection to a problem of SK generation
since the right side above corresponds to the SK capacity of
a modified source model with two terminals that have access,
respectively, to i.i.d. repetitions of the rvs X1 and (X2, G).

Proof: In order to avoid the trivial, we assume that
H(X2 | X1) > 0 and H(G | X1) > 0. The converse part (12)
is easy. Let g be securely computable at terminal 1. Consider
an augmented model with X ′

1 = X1 and X ′
2 = (X2, G).

Clearly, g must be securely computable also for the augmented
model and, hence, by Theorem 2, must satisfy

H(G) ≤ I(X1 ∧ X2, G) (14)

which is (12).
The achievability part entails showing that (11) is sufficient

for the the existence of a Slepian-Wolf code for reconstructing
Xn

2 near-losslessly at terminal 1 using public communication
(the Slepian-Wolf codeword) that is nearly independent of Gn.
By (11), pick 0 < H(X2 | X1) < R < H(X2 | G). Consider
the random mapping F : Xn

2 → {1, . . . , 
exp(nR)�} such
that the rvs F (xn

2 ), xn
2 ∈ Xn

2 , are mutually independent and

uniform on {1, . . . , 
exp(nR)�}. Given ε > 0, by the Slepian-
Wolf theorem (cf. e.g, [3, Lemma 3.1.13, pp. 252-253]), F
yields an (n, ε)-source code with large probability, i.e.,

Pr {φ(F (Xn
2 ), Xn

1 ) = Xn
2 } ≥ 1 − ε, (15)

for some decoder φ = φ
(n)
F . Furthermore, using Lemma BC

in the appendix with U = Xn
2 , V = Gn, h = constant and

d = exp[n(H(X2 | G) − ε)], we get that

I(F (Xn
2 ) ∧ Gn) < ε, (16)

with probability approaching one as n tends to infinity.
Therefore, for all n sufficiently large, there exists an
encoder f : Xn

2 → {1, . . . , 
exp(nR)�} and a decoder
φ : {1, . . . , 
exp(nR)�}×Xn

1 → Xn
2 satisfying (15) and (16)

with f replacing F . Thus, terminal 1, having recovered Xn
2

as above, can compute g and do so securely.

Returning to secure computation by all the terminals in
M, observe in the proof of Theorem 2 that g was securely
computed from omniscience at all the terminals inM that was
attained using noninteractive public communication. However,
omniscience is not necessary for the secure computation of g,
and it is possible to make do with communication of rate
less than RCO(XM) using an interactive protocol. This is
illustrated by the following example.

Example. Consider the secure computation of g by m = 2 ter-
minals. In order to avoid the trivial, assume that H(G|X1) >
0. The condition H(G) < I(X1 ∧ X2) in (8) yields H(G) <
I(X1∧X2)+H(G | X2) which is equivalent to (11). It follows
as in the proof of Theorem 4 that terminal 1 can reconstruct
Xn

2 , and therefore compute gn, from public communication F2

of rate ∼= H(X2 | X1) from terminal 2 (corresponding to F
in that proof) that is nearly independent of Gn. Further, using
Lemma BC in the appendix, terminals 1 and 2 can generate
a SK K = K(Xn

2 ) of rate ∼= H(X2 | G) − H(X2 | X1) and
with arbitrary small I(K∧Gn, F2) for all n sufficiently large.
Next, terminal 1 constructs a Slepian-Wolf codeword Fg

for g with Xn
2 as side-information, of rate ∼= H(G | X2) and

communicates to terminal 2 its encrypted version

F1 = Fg + K mod 2

(all represented in bits), with encryption feasible if

H(G | X2) < H(X2 | G) − H(X2 | X1),

a condition equivalent to (8). Terminal 2 first decrypts F1 using
K to recover Fg , and thereby also gn using Xn

2 .
The computation of gn is secure since

I(Gn ∧ F1, F2) = I(Gn ∧ F2) + I(Gn ∧ F1 | F2)

is small; specifically, the first term is negligible as noted above,
while the second term is bounded by

I(Gn ∧ F1 | F2) = H(Fg + K | F2) − H(Fg + K | Gn, F2)
≤ H(K) − H(Fg + K | Gn, F2)
= I(K ∧ Gn, F2),
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whose smallness too has been noted.
Observe that the communication F1 from terminal 1 is inter-

active as it depends on the communication F2 from terminal 2.
Also, omniscience at both the terminals is not attained. While
terminal 1 reconstructs Xn

2 , terminal 2 cannot reconstruct X
n
1

because the communication F1 has rate ∼= H(G | X2) <
H(X1 | X2); the overall rate of public communication falls
short of RCO(X1, X2) = H(X1 | X2) + H(X2 | X1).

IV. DISCUSSION

We have considered an elemental multiterminal source
model of secure computation with public communication in
which we seek conditions for computability with secrecy from
an eavesdropper with access to only this communication. We
obtain simple necessary and sufficient conditions on function
entropy and SK capacity of an associated SK generation model
that, in particular, do not involve auxiliary rvs.
A problem of considerably more difficulty is that of char-

acterizing the minimum rate of public communication that
is needed for secure computation. Similarly difficult is the
practically important situation in which a function must be
computed with secrecy from an eavesdropper that has access
to “wiretapped” side information in addition to the public
interterminal communication. These problems remain open,
in general, as do single-letter answers to their counterparts in
SK generation.

APPENDIX

Our proofs call for a balanced coloring of a set correspond-
ing to a rv that differs from another rv for which probability
bounds are used. However, both rvs agree with high probability
when conditioned on a set of interest.
Consider rvs U,U ′, V with values in finite sets U ,U ′,V ,

respectively, and a mapping h : U → {1, . . . , r′}. For λ > 0,
let U0 be a subset of U such that
(i) Pr {U ∈ U0} > 1 − λ2;
(ii) given U ∈ U0, h(U) = j, V = v, U ′ = u′, there exists
u = u(u′) ∈ U satisfying

Pr {U = u | h(U) = j, V = v, U ∈ U0}
= Pr {U ′ = u′ | h(U) = j, V = v, U ∈ U0} ,

for all 1 ≤ j ≤ r and v ∈ V . Then the following holds.
Lemma BC. (Balanced Coloring) Let the rvs U,U ′, V and
the set U0 be as above. Further, assume that

PUV

({
(u, v) : Pr {U = u | V = v} >

1
d

})
≤ λ2.

Then, a randomly selected mapping φ : U ′ → {1, . . . , r} fails
to satisfy

r′∑
j=1

∑
v∈V

r∑
i=1

Pr {h(U) = j, V = v}×
∣∣∣∣∣∣

∑
u′∈U ′:φ(u′)=i

Pr {U ′ = u′ | h(U) = j, V = v} − 1
r

∣∣∣∣∣∣ < 12λ,

with probability less than 2rr′|V| exp
(
− cλ3d

rr′

)
for a constant

c.
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